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We studied the reconstruction of turbulent flow fields from trajectory data recorded by
actively migrating Lagrangian agents. We propose a deep-learning model, track-to-flow
(T2F), which employs a vision transformer as the encoder to capture the spatiotemporal
features of a single agent trajectory, and a convolutional neural network as the decoder
to reconstruct the flow field. To enhance the physical consistency of the T2F model, we
further incorporate a physics-informed loss function inspired by the framework of physics-
informed neural network (PINN), yielding a variant model referred to as T2F+PINN.
We first evaluate both models in a laminar cylinder wake flow at a Reynolds number of
Re =800 as a proof of concept. The results show that the T2F model achieves velocity
reconstruction accuracy comparable to that of existing flow reconstruction methods, while
the T2F4-PINN model reduces the normalised error in vorticity reconstruction relative to
the T2F model. We then apply the models in turbulent Rayleigh-Bénard convection at
a Rayleigh number of Ra = 10% and a Prandtl number of Pr=0.71. The results show
that the T2F model accurately reconstructs both the velocity and temperature fields,
whereas the T2F+4-PINN model further improves the reconstruction accuracy of gradient-
related physical quantities, such as temperature gradients, vorticity and the Q value, with
a maximum improvement of approximately 60 % compared to the T2F model. Overall,
the T2F model is better suited for reconstructing primitive flow variables, while the
T2F+PINN model provides advantages in reconstructing gradient-related quantities. Our
models open a promising avenue for accurate flow reconstruction from a single Lagrangian
trajectory.
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1. Introduction

Access to high-resolution spatiotemporal flow fields is critical for a wide range of real-
world applications, including the autonomous navigation of aerial and underwater vehicles
(Lawrance & Sukkarieh 2009; Masmitja et al. 2023; Zhang et al. 2023), migration of
microswimmers (Qiu et al. 2022a,b; Mousavi et al. 2024, 2025) and environmental
monitoring (Smith Jr et al. 2021). For example, in unmanned aerial vehicles (UAVs)
and underwater autonomous navigation, accurate knowledge of the underlying turbulent
flow fields enables the implementation of globally optimal path planning algorithms
including model predictive control (Krishna et al. 2022, 2023) and adaptive control
(Landau et al. 2011), which can outperform local decision-making approaches such as
reinforcement learning (Reddy et al. 2016, 2018; Gunnarson et al. 2021). This capability
allows autonomous vehicles to identify and exploit beneficial flow features (e.g. updrafts),
thereby improving energy efficiency and extending operational endurance. However, in
realistic atmospheric or ocean environments, direct measurements of the full Eulerian flow
field are often infeasible due to limited sensor coverage and the high cost of deployment.
Instead, the available observation data are typically a single Lagrangian trajectory,
collected by mobile sensors mounted on the vehicles themselves. These measurements
are inherently Lagrangian in nature and often represent the only accessible data under
operational conditions (Calascibetta et al. 2023; Jiao et al. 2025). Several methods have
been proposed to reconstruct Eulerian fields from Lagrangian observations. For example,
FlowFit (Gesemann et al. 2016) and VIC+ (Schneiders & Scarano 2016) reconstruct
Eulerian fields using physics-constrained approaches that achieve accurate reconstructions
when dense particle tracking data are available. However, in realistic scenarios of
autonomous aerial or underwater navigation, only a single Lagrangian trajectory may be
accessible, and the information contained in such sparse measurements is insufficient for
these methods. This situation poses a challenge: can we accurately reconstruct the flow
field from a single Lagrangian trajectory?

This flow reconstruction challenge can be formulated as a super-resolution
reconstruction problem, where the goal is to infer high-resolution flow fields from sparse
and incomplete measurements. Conceptually, the task parallels classical image super-
resolution in computer vision, where high-resolution images are reconstructed from
their low-resolution counterparts (Wang, Zhou & Sun 2020c). Given the sparsity of the
available data, machine-learning-based super-resolution (MLSR) methods have emerged
as promising tools to address this problem. Recent advances have extended MLSR
methods to fluid flows by replacing the RGB (red, green and blue) image channels
with physically meaningful quantities such as velocity or temperature fields (Fukami,
Fukagata & Taira 2023). Building on this analogy, various machine learning architectures
have been developed for flow-specific MLSR tasks. Fukami, Fukagata & Taira (2019)
introduced a convolutional neural network (CNN) architecture for a two-dimensional
laminar cylinder wake and homogeneous decaying turbulence. Subsequent extensions
include a spatiotemporal MLSR method (Fukami et al. 2021a), a Voronoi tessellation-
assisted MLSR method (Fukami et al. 2021b) and a single-snapshot MLSR method
(Fukami & Taira 2024), each tailored to distinct application scenarios. The applicability of
MLSR approaches across diverse flow configurations has also been demonstrated by Liu
et al. (2020), Nair & Goza (2020), Zhou et al. (2022) and Liu et al. (2026). To enhance
the robustness and generalisability of these models, physics-informed loss functions that
incorporate the governing equations of fluid dynamics have been introduced into the
training process (Fukami et al. 2023). These physical constraints may be imposed in
unsupervised learning (Bode et al. 2021; Gao, Sun & Wang 2021) or incorporated as part
of a hybrid loss function that combines physical consistency with a traditional mean square
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error loss function in supervised learning (Lee & You 2019; Ren et al. 2023). Recently,
Weiss et al. (2025) demonstrated an elegant physics-based method for reconstructing the
temperature field by solving a Poisson equation derived from applying the curl operator
twice to the Navier—Stokes equations. Similar to MLSR methods, this temperature field
reconstruction requires Eulerian measurements.

Despite recent advancements, reconstructing flow fields from sparse Lagrangian
trajectory data remains more challenging than conventional super-resolution tasks.
First, the input measurements consist of irregularly sampled and temporally evolving
trajectories. This irregularity hinders effective feature extraction by conventional CNN-
based MLSR methods, thereby motivating the development of alternative architectures
capable of directly processing Lagrangian inputs (Fukami et al. 2021b). Second, in
practical applications, trajectory data are often corrupted by sensor noise and localisation
errors, which degrade signal quality and introduce uncertainties into the reconstructed flow
fields. The reconstructions must remain physically consistent under such noisy conditions,
particularly when gradient-related flow quantities (e.g. vorticity or velocity gradient) are of
interest (Jiao et al. 2025). These quantities are highly sensitive to even minor spatial errors
in the reconstructed primitive fields, and any lack of physical consistency may result in
significant distortions of the underlying flow structures.

Together, these challenges underscore the need for machine learning models that
not only accommodate irregular and noisy Lagrangian trajectory data but also enforce
physical consistency throughout the reconstruction process. In this work, we present
a deep-learning model, termed track-to-flow (T2F), for reconstructing flow fields from
the Lagrangian trajectories of self-propelling agents. The T2F model integrates a vision
transformer (ViT) to capture spatiotemporal patterns within the trajectory data, and a CNN
as the decoder to generate flow fields in the vicinity of the agent trajectories. In addition,
a physics-informed loss function is incorporated to enhance the physical consistency,
particularly in gradient-related quantities. The rest of this paper is organised as follows.
In § 2, we introduce the T2F model in detail. In § 3, we validate the model in a laminar
cylinder wake flow, serving as a proof-of-concept test. In § 4, we extend the application
to turbulent Rayleigh-Bénard (RB) convection, a canonical flow system representative of
convection in the atmosphere and oceans. The main findings of this work are summarised
in § 5.

2. Numerical methods

An overview of the T2F model is illustrated in figure 1. We first employ reinforcement
learning to train self-propelling Lagrangian agents to perform point-to-point migration
tasks within a flow environment, thereby generating agent trajectories as training data.
Subsequently, the T2F model takes the trajectory information from the self-propelling
agents as input and outputs the flow field in the vicinity of those trajectories.

2.1. Migration of self-propelling agents
In this work, we consider an inertialess self-propelling agent model (Cichos et al. 2020),
which is described as
Uagent = Ufluid T Upropel = Wfluid + Upropel[cos(9)7 sin(0)], (2.1
xagent(t +dt) = xagent(t) + uagent(t) dr, (2.2)

where dt is the time step. Here, uqgens and x g0, denote the velocity and position of
the agent, respectively; ugyiq i the local fluid velocity; and Upgpe; is the self-propelling
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Figure 1. Overview of the T2F model for reconstructing flow fields in the cylinder wake. An actively navigating
Lagrangian agent collects local flow cues along its trajectory, which are subsequently used to infer the
surrounding Eulerian flow field.

velocity magnitude generated by the agent. The agent moves at a constant speed Uy oper
and directly controls its swimming direction 8. This is a toy model that describes the
kinematics of UAVs in the atmosphere or autonomous underwater vehicles in the ocean.
The model is justified by the fact that, in realistic atmospheric or oceanic scenarios, the
characteristic length scale of the vehicles (of the order of metres) is several orders of
magnitude smaller than that of the atmospheric or oceanic convection layer (typically
kilometres). Similar dynamic models have been adopted in previous works (Biferale et al.
2019; Borra et al. 2022; Krishna, Song & Brunton 2022; Monthiller et al. 2022).

To control the migration behaviour of a self-propelling agent within a flow environment,
we employ reinforcement learning, a model-free control strategy rooted in behavioural
psychology, in which an agent learns optimal actions through trial-and-error interactions
with its environment (Sutton & Barto 1998). Reinforcement learning has been increasingly
applied in fluid mechanics, including drag reduction (Wang et al. 2022; Zhou, Zhang &
Zhu 2025), heat transfer enhancement (Zhou & Zhu 2025), vortex shedding control (Li &
Zhang 2022) and biologically inspired navigation tasks (Zhu, Fang & Zhu 2022). In this
work, we formulate a point-to-point migration problem, wherein agents are trained to
reach randomly assigned target locations from randomly initialised starting points. The
environmental cues available to the agent include its current position, its position relative
to the target, the local fluid velocity and the target position. This information defines
the observation state s = [X agenr, AXagenrs Wfluid> X rarger], Where AX qgenr = X 1arger — X agent-
Based on this observation, the agent takes an action a;, defined as the control of
the propulsion direction 6. The agent’s behaviour is shaped by a reward function that
encourages efficient navigation towards the target. Following Gunnarson ef al. (2021), we
define the reward function as

|E _xtarget” _ llx: _xtarget”

re=—dt +10 |: :| ~+ Tbonuss (2.3)

Upropel Upropel
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where

200, lx; — xtarget” < H/36
Ybonus = (2.4)
0, others.

Here, x; and x,_; denote the agent’s position at the current and previous time steps,
respectively, and H is the height of the computational domain. The first term of (2.3)
penalises time consumption, thereby encouraging the agent to navigate quickly. The
second term of (2.3) rewards progress towards the target, while the last term of (2.3)
provides a large terminal reward for successful arrival within a defined proximity to the
target.

The reinforcement learning training is conducted using the soft actor-critic algorithm,
which aims to maximise both the expected cumulative reward (i.e. successful task
completion) and the entropy of the policy (i.e. encouraging exploration). The optimisation
objective is defined as

n*(0) = arg max E;~y {Z {re(se, ary se1) + ozH[n(-Ist)]}} . (2.5)
t=0

Here, 7 denotes the policy, represented by a neural network that maps the observation state
s; to a Gaussian distribution over actions a;. The notation 7 (+|s;) denotes that the policy
is stochastic 7* denotes the optimal policy, i.e. the policy with optimised parameters ¢*.
The trajectory t = (s9, a0, S1, a1, - - - , 8, d;) represents a sequence of states and actions
generated by the policy, and T ~ 7 indicates that the trajectory is sampled from w. The
reward function is r¢(s¢, ar, s;+1) defined in (2.3), and H [ (+|s;)] is the entropy term that
encourages exploration.
The entropy H of the policy 7 at state s; is computed as

Hm(-|s)] = Eg~n(-|s)[— log m(a;]s1)]. (2.6)

For a Gaussian distribution 7 (+|s;) over actions a; with mean 1 (s;) and standard deviation
o (s;), the entropy can be simplified as

1
Hm(-|s)] = 5 log (2ea (s;)?). (2.7)

The entropy H encourages exploration by favouring more stochastic policies. The
parameter « is a trade-off coefficient that balances the reward and entropy terms. Further
details of the soft actor-critic algorithm can be found in Haarnoja et al. (2018).

2.2. Deep-learning model: track-to-flow

We develop the T2F deep-learning model to reconstruct flow fields from the Lagrangian
trajectories of self-propelling agents. The T2F model adopts an encoder—decoder
architecture comprising a ViT as the encoder and a CNN as the decoder (see figure 2).
Encoder—decoder architectures are widely employed in deep learning, particularly in
natural language processing (Badrinarayanan, Kendall & Cipolla 2017) and computer
vision (Cho et al. 2014). The encoder transforms the input sequence into a set of high-
dimensional feature representations, which are subsequently utilised by the decoder
to generate the desired output. Such architectures have been successfully applied to
aerodynamic feature extraction under extreme conditions (Fukami & Taira 2023).

In this study, the input to the model consists of localised trajectory data from
self-propelling agents. These trajectories encode both fine-scale gradient information
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Figure 2. Schematic of the T2F model architecture. The model consists of a ViT encoder that extracts
spatiotemporal features from Lagrangian trajectory data, followed by a CNN decoder that reconstructs the
corresponding Eulerian flow field.

over short time scales and broader spatial-temporal correlations over longer horizons.
Such multi-scale features are inherently difficult to extract using traditional methods.
Interestingly, these input characteristics resemble those encountered in natural language
processing and computer vision tasks, where close contextual relationships exist between
adjacent words or pixels, while longer-range dependencies span across sentences or image
regions. To this end, we adopt the Transformer architecture, which is capable of capturing
both short- and long-range dependencies in sequential data. Specifically, we utilise the ViT
as the encoder (Dosovitskiy et al. 2021), as illustrated on the left-hand side of figure 2.
The ViT has demonstrated competitive performance in visual tasks by directly processing
images as sequences of patches, which are small segments obtained by partitioning the
input image. In the two-dimensional setting, we model a single particle trajectory as a
short ‘video’ composed of local flow snapshots. The input of the T2F model encoder is a
four-dimensional tensor xq € R 7>l xlixC ywhere [ p 1s the edge length of each square patch
so that one patch spans an /,, x [, neighbourhood of grid points; /; is the number of time
steps sampled along the trajectory; and C denotes the number of physical channels stored
at every grid point (e.g. the velocity components (u,v), pressure, temperature, etc.). Next,
Transformer architecture is applied to extract spatiotemporal features from the Lagrangian
input. The final output of the ViT encoder is a tensor xy;r € Rl1>de which represents a
latent embedding of the input sequence.

Following feature extraction, a decoder is employed to reconstruct the corresponding
Eulerian flow field. The decoder is based on a CNN, which is a class of deep-learning
models widely used in image processing tasks (Li et al. 2021). Through multiple
layers of convolution and pooling, CNNs progressively extract and refine hierarchical
spatial features. In this study, we utilise the inverse operation of convolution, namely
deconvolution, to reconstruct the flow field from the encoded features. Specifically,
the deconvolution operation transforms an input tensor x;, € RHI*WixCi jnto an
output tensor X, € R2XW2xC2aq jllustrated on the right-hand side of figure 2. The
encoded features are first reshaped into multi-channel matrices and then progressively
upsampled through multiple deconvolution layers. The final output is the reconstructed
flow field y e RT*WxC  where C represents the number of physical quantities
being reconstructed and H x W represents the spatial domain adjacent to the agent
trajectories. Details of the T2F model architecture, including the number of layers and
hyperparameters, are provided in Appendix A.

2.3. The physics-informed loss function

We employ a physics-informed loss function inspired by the framework of physics-
informed neural networks (PINNSs), which are a class of mesh-free methods for solving

1026 A46-6


https://doi.org/10.1017/jfm.2025.11033

https://doi.org/10.1017/jfm.2025.11033 Published online by Cambridge University Press

Journal of Fluid Mechanics

partial differential equations using neural networks (Raissi et al. 2019a). In conventional
neural network training, data-driven models learn mappings between inputs and outputs by
minimising a loss function defined over labelled datasets. The PINNs extend this paradigm
by incorporating governing physical laws (typically represented as differential equations)
directly into the loss function. This approach enables the neural network to learn solutions
that approximately satisfy the underlying physics, even in the absence of dense or high-
fidelity training data. Although PINNSs offer significant advantages, they enforce physical
constraints only approximately, treating the governing equations as soft constraints. As
a result, their accuracy may degrade when solving forward problems at moderate-to-
high Reynolds numbers (Chuang & Barba 2022). Nevertheless, PINNs have demonstrated
success in inverse problems, where system parameters or hidden fields must be inferred
from sparse or noisy observations. Representative applications include the inference of
structural properties, pressure and velocity fields (Raissi et al. 20195, 2020; Boster, Cai &
Ladr’o 2023), as well as the reconstruction of experimental flow velocity fields from
noisy measurements (Cai et al. 2021; Kontogiannis et al. 2022; Toscano et al. 2025). It
is worth mentioning that the philosophy of physics-informed approaches has also been
applied to operators by embedding partial differential equations into the loss functions,
such as a physics-informed neural operator, as Zhao et al. (2025) demonstrated in the
novel application of LESnets (large-eddy simulation nets).

In the following, we first describe the mean-squared error loss function used in the
standard T2F model, which does not incorporate any physics-based constraint. In the
standard T2F model, the loss function Ljssg is defined as

N x CZZ (i — D)2, (2.8)

j=1i=l

Lpr=Lyse=

where N =H x W is the total number of spatial grid points and C is the number
of physical quantities being reconstructed. The terms yﬁé’/ ) and yr(éj’/ ) denote the
reconstructed value and the reference values, respectively, at the ith grid point for the
Jjth physical quantity. Minimising this loss encourages the model to align its predictions
closely with the ground-truth data.

To incorporate physical constraints, we augment the loss function with a physics-
informed term, yielding the T2F+PINN model, in which the total loss function comprises
a data loss Lyssg and an equation-based loss Lppg. The equation loss is derived from the
residual of the governing partial differential equations, expressed in general form as

ou

E—I—N[u]:O, xef2,tel0,T], (2.9)
where u(x, t) is the latent solution field, A is a nonlinear differential operator, 2 is the
spatial domain of the equation and [0, 7] is the time interval. The residual function is
defined as

f= {;—L; + Nul, (2.10)

which quantifies the degree to which the reconstructed field violates the governing
equations. The equation loss Ippg for a single equation is given by

N
1
lppE =~ §_ lj | f (i, y)I?, (2.11)
1=
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where N is the number of grid points. Here, f(#;, y;) denotes the residual evaluated at
the ith grid point, where #; is the time and y; is the reconstructed field value at that point.
For systems governed by multiple equations, the total equation loss is a weighted sum of
individual residuals:

Ny Ny 1
Lppe= ;} wilppy = k; wi > fetei, )l (2.12)

i=1

where Ny is the number of governing equations, f; denotes the residual for the kth
equation and wy, is the corresponding weight. In summary, the full loss function for the
physics-augmented T2F+-PINN model is

Ny

L12F+PINN = WdataLMsE + Z wi I (2.13)
k=1

where wy4, and wy control the relative contributions of data fidelity and physical
consistency, respectively.

In this study, the inclusion of the physics-informed loss function transforms the
reconstruction task into an inverse problem, in which the model aims to infer the latent
Eulerian fields from observed Lagrangian trajectories. In contrast to conventional PINN
formulations, the absolute spatial coordinates x and time ¢ are not supplied as explicit
inputs to the network; instead, the model processes local Eulerian patches extracted
along the particle trajectory, while spatiotemporal context is introduced only through
learnable positional embeddings. As a result, we cannot apply automatic differentiation
to compute temporal derivatives (e.g. du/dt, 0T /dt). Instead, these temporal derivatives
are calculated using the reference velocity and temperature fields obtained from numerical
simulations. After training, we assess the reconstruction performance of both models using
the normalised L, error, which provides a scale-invariant measure of accuracy. For a single
reconstruction, the normalised L, error € is defined as

_ | yree — yref”Z

(2.14)
”yref”Z

where y;.c and y,.s denote the reconstructed and reference fields, respectively, and ||-||2 is
the Euclidean norm. This metric enables consistent comparisons across different datasets
and physical quantities.

3. Flow field reconstruction in cylinder wake
3.1. Simulation settings

We evaluate the T2F and T2F+PINN models in a two-dimensional cylinder wake flow
as a proof-of-concept test. The governing equations for the incompressible flow around a

circular cylinder are
V.u=0, 3.1
du 1 2
—4u-Vu=——Vp+vV-<u, 3.2)
ot P

where u = (u, v) is the velocity field, p is the density, p is the pressure and v is the
kinematic viscosity. To non-dimensionalise the equations, we introduce the following
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Figure 3. Trajectories of self-propelling agents navigating from the initial region (red) to the terminal region
(blue) within the cylinder wake flow. The background contours represent the instantaneous out-of-plane
vorticity field, illustrating the underlying flow structures guiding agent migration.

scaling:
tU, u
= —, l’*=—oo, u*=—, p*:—pz,
D D U pUS
where Uy is the free-stream velocity and D is the cylinder diameter. The dimensionless
governing equations then become

(3.3)

V-.u*=0, (3.4)
a;’: Fut eVt =—Vp* + RieVZu*, 3.5)

where the Reynolds number is defined as
Ro= 227 (3.6)

The computational domain is set to [12D, 6 D] and the mesh resolution is 1024 x 512.
The cylinder is placed at the centre of the domain at coordinates (D, 3D). The simulations
are performed using the open-source lattice Boltzmann solver Palabos (Latt er al. 2021)
and are cross-validated with our in-house lattice Boltzmann solver (Xu & Li 2023, 2024).
A Reynolds number of Re = 800 is chosen. The resulting vorticity field exhibits a well-
defined Kdrman vortex street (see figure 3).

3.2. Migration of self-propelling agents
Using the simulated flow field, we train self-propelling agents via reinforcement learning
to generate n,; = 100 point-to-point migration trajectories. As a benchmark, we refer
to the study by Gunnarson et al. (2021). However, unlike their set-up, we modify the
locations of the initial and terminal regions. In our configuration, agents migrate along
the streamwise direction (see figure 3), whereas Gunnarson et al. (2021) reported zigzag-
like trajectories aligned with the spanwise direction. This modification slightly reduces
task complexity while significantly improving training efficiency. In our case, the agent’s
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Figure 4. Reconstruction results from the T2F and T2F+PINN models for a representative input in the cylinder
wake. Ground-truth fields of (a) horizontal velocity u%, (b) vertical velocity u; and (c¢) out-of-plane vorticity
7. (d-f) Reconstructions by the T2F model. (g—i) Reconstructions by the T2F+PINN model. Listed values
denote the normalised L, error €.

reward signal saturates after approximately 1000 episodes and reaches its maximum value
by around 4000 episodes. In contrast, the best-performing agent in the study of Gunnarson
et al. required roughly 5000 episodes to plateau and more than 10 000 episodes to reach its
optimal reward.

3.3. Evaluation of the T2F and T2F+PINN models

We evaluate the performance of the T2F and T2F+PINN models by reconstructing the
velocity components in both the horizontal (u,) and vertical (u) directions, corresponding
to a total of C =2 output channels. The reconstructed velocity fields are subsequently used
to compute the out-of-plane vorticity, defined as w, = (V x u),. The training dataset for
both models is constructed as follows. First, the reinforcement learning agent described
in §3.2 is used to generate n, = 100 point-to-point migration trajectories. From each
trajectory, ngampie = 10 segments are extracted at randomly chosen initial times, each
segment consisting of 50 consecutive time steps. This yields a total of n4in = nyg ¥
Nsample = 1000 training samples. The same procedure is applied in the testing phase to
generate n,5 = 1000 samples for evaluating the reconstruction accuracy of the models.
Figure 4 presents the reconstructed velocity fields obtained using the T2F and
T2F+PINN models for a representative input, with the normalised L, error reported
beneath each reconstructed flow field. We can see that both models are able to capture
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Figure 5. Pointwise reconstruction errors of the horizontal velocity u, vertical velocity u’

in the cylinder wake: (a—c) the T2F model, (d—f) the T2F-+PINN model.

and vorticity o}

the spatial patterns of the flow structure. However, the reconstructions from the T2F
model exhibit a noticeable blurring effect (see figure 4d,e), resulting in the loss of
fine-scale features. This blurring phenomenon is widely reported in flow-specific MLSR
tasks across different flow scenarios (Fukami er al. 2019; Zhou et al. 2022; Liu et al.
2023). In contrast, the T2F4-PINN model occasionally produces spatial misalignments in
the reconstructed flow structures (see figure 4g,h). This raises a natural question: how
do such visual discrepancies in the primitive flow variables (e.g. velocity) affect the
accuracy of gradient-based quantities (e.g. vorticity)? When the reconstructed velocity
field exhibits sharp but inconsistent transitions, as observed in the T2F model, the
resulting vorticity computation becomes less accurate (see figure 4f). This suggests that,
although the purely data-driven T2F model can recover the overall flow structure, it
lacks sufficient adherence to physical constraints necessary for accurately reconstructing
gradient-based quantities. In contrast, the T2F4+-PINN model, by incorporating governing
equations into the training process, effectively mitigates such inconsistencies and improves
the accuracy of the reconstructed vorticity field (see figure 4i). These differences
underscore the importance of incorporating physics-informed constraints in enhancing
the physical fidelity of reconstructions, particularly for gradient-related quantities. To
illustrate the dynamic reconstruction process of the T2F model for the cylinder wake
flow, the corresponding video can be viewed in supplementary movie 1 available at
https://doi.org/10.1017/jfm.2025.11033.

Figure 5 shows the pointwise error fields associated with the reconstructions produced
by the T2F and T2F+PINN models. For the T2F model, the reconstruction errors appear
to be randomly distributed across the domain, with no discernible spatial structure
(see figure 5a—c). In contrast, the reconstruction errors from the T2F+PINN model
exhibit geometrically structured patterns (see figure 5d-f), indicating that the error
distribution is more closely aligned with the underlying physical processes. In particular,
the reconstructed vortical structures in the T2F4-PINN case display physically constrained
translations and deformations, rather than spurious or uncorrelated distortions. Compared
with the results in figure 4, these observations suggest that incorporating physics-informed
constraints via PINN leads to more accurate reconstructions of vortical structures, thereby
improving the recovery of gradient-based flow features.
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Figure 6. Evolution of the normalised L errors over training epochs for the cylinder wake reconstruction task.
Reconstruction errors for (a) horizontal velocity u7, (b) vertical velocity u and (c) vorticity @}, comparing
the performance of the T2F and T2F+PINN models. ’

We also evaluated reconstruction errors across all nzg, = 1000 samples in the test
set. Figure 6 shows the averaged normalised L, error for the reconstructed variables
as a function of training epoch. For the T2F model, the errors in the reconstructed
velocity component 3 and «? at 10 000 training epochs are approximately 0.06 and 0.19,
respectively, which are much lower than those of the T2F4-PINN model (see figure 6a,b),
corresponding to reductions of approximately 38.1 % and 38.4 %. In contrast, the vorticity
error of the T2F+PINN model at 10 000 epochs is approximately 0.91, slightly lower
than that of the T2F model, with a reduction of around 4.2 % (see figure 6¢). These
differences reflect the learning behaviours of the two models. The purely data-driven T2F
model rapidly captures the dominant velocity structures but struggles to learn accurate
velocity gradients, leading to higher errors in vorticity. The T2F+PINN model, on the
other hand, incorporates physics-based constraints via the governing equations. While this
results in a modest degradation in velocity reconstruction compared with the T2F model, it
significantly enhances the fidelity of the reconstructed vorticity field. Similar trends have
been reported by Yousif, Yu & Lim (2021), who observed that optimisation using only
data loss produced distorted fluctuations in velocity components, whereas incorporating
physics-based loss reduced sharpness in the flow-field details. We attribute this trade-off to
the inherently multi-objective nature of the T2F+PINN framework. In addition to the data
loss minimised by the single-objective T2F model, it introduces a physics-based loss term
(see §2.3). During training, these competing objectives require compromise, forcing the
T2F+PINN model to balance physical consistency against direct data fidelity. As a result,
when evaluated purely in terms of data loss (i.e. the Ly error for primitive variables),
the T2F+PINN model may underperform relative to the T2F model. It is noteworthy
that the fluctuations observed in figure 6(a,b) reflect variations in test-set performance,
rather than instability in the training process. Instead, training convergence is confirmed
by monitoring the loss on a small held-out validation set during training. To demonstrate
that the model has reached convergence, the corresponding training and validation loss
curves are provided in Appendix B.

To benchmark our method, we compare its performance with that of the MLSR
approach by Fukami et al. (2019), which reconstructs high-resolution Eulerian fields from
downsampled Eulerian inputs. Although the problem settings differ substantially, as our
model infers flow fields from sparse Lagrangian trajectories, whereas Fukami et al. (2019)
reconstruct high-resolution fields from uniformly downsampled low-resolution data, we
think such a comparison is still informative in interpreting the achievable reconstruction
error levels. In the study by Fukami et al. (2019), a normalised Lj error of approximately
€ =0.04 was reported, when reconstructing a 192 x 112 high-resolution field from a
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T2F model T2F+PINN model
Patch size [,, uy ul o} uy 7 o}
1 0.080 0.213 1.084 0.116 0.306 0.933
2 0.081 0223 1.012 0.114 0309 0.920
4 0.080 0217 0.883 0.114 0298 0.893
8 0.080 0.210 0.825 0.113 0.284 0.866

Table 1. Normalised L, errors of the reconstructed velocity components and vorticity fields in the cylinder
wake for different patch sizes /,. The results are averaged over n5 = 1000 test samples and six independent
simulations.

12 x 7 low-resolution input using 1000 snapshots. In comparison, our T2F model was
also trained on 1000 samples, and it achieves a normalised L, error of approximately
€ = 0.06 when reconstructing a 128 x 128 velocity field from 2 x 2 x 50 trajectory-based
measurements. This similarity in error magnitude demonstrates the data efficiency of
our proposed T2F model, particularly considering its reliance on sparse, irregular and
non-grid-aligned Lagrangian inputs.

In this work, we model an unmanned aerial or underwater vehicle as a point-particle
agent. In practice, however, such vehicles have finite size and often carry multiple
sensors, making it reasonable to assume that local flow information in the vicinity of the
particle is accessible. Accordingly, in our simulations each temporal slice of the trajectory
corresponds not to a single-point measurement, but to a square spatial patch of size [,, x [,
centred on the particle position, containing C physical variables (C =2 for u, v). We
investigate the robustness of the T2F and T2F+PINN models under varying patch size [,,.
We consider four patch sizes: [, =1, 2, 4 and 8 grid points. For [, = 1, the input patch is
a single point, which represents the limiting scenario in which the particle probes only a
single point per time step, and it is obtained by bilinear interpolation of the nearest grid
point. The results averaged over n.5 = 1000 test samples and six independent simulations
for T2F and T2F+PINN model are shown in table 1. For the cases /[, =1 and [, =2
(corresponding to typical UAV scenarios with one or four sensors), the T2F model is more
accurate for reconstructing the primary flow variables (e.g. velocity components u} and
u;“,), whereas the T2F+PINN model has an advantage in reconstructing gradient-related
quantities (e.g. vorticity }). For larger patch sizes [, =4 and [, =8 (corresponding to
UAV scenarios with 16 or 64 sensors), the T2F model outperforms the T2F4+PINN model
for all variables. We attribute this behaviour to the increased information content available
by larger patch sizes, which reduces the relative impact of the PINN constraints. Moreover,
for both models, the reconstruction errors for u} and u’}", remain relatively stable across
different patch sizes, with a maximum variation of about 5%. The vorticity error w}
exhibits a slightly larger variation of about 14 % when the patch size is increased from
[, =1tol, = 8. Overall, the T2F and T2F+PINN models demonstrate robust performance
across a range of patch sizes, indicating their flexibility in handling different spatial scales
of input data.

In practical applications, observed environment cues may be contaminated by noise
arising from sensor inaccuracies or environmental disturbances. To further evaluate the
robustness of our model, we assess the performance of the T2F and T2F+PINN models
under varying levels of input noise. Specifically, Gaussian noise is added to the input
variable in the test set, which consists of the two velocity components (uy, uy). For
each component, random values are drawn independently from a normal distribution
N (Xmeans Xmax/3), Where Xpean and x4, denote the mean and maximum values of that
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Figure 7. Reconstruction results of the T2F model under varying levels of input noise for a representative test
sample: (a—c) horizontal velocity u}, vertical velocity u} and vorticity o} at a noise level of n =0.1; (d-f)
reconstructions at n = 0.2; and (g—i) reconstructions at = 0.5. Listed values denote the L, error €.

component, respectively. This design choice reflects realistic scenarios in autonomous
aerial or underwater navigation, where onboard sensors measure local velocities, and
adding noise to the measured variables therefore provides a faithful representation of
sensor uncertainty. The noisy input is given by

Xnoise = Xinpur + 1 * N(xmeana Xmax/3), (3.7)

where 1 controls the noise amplitude. We consider three noise levels of n =0.1, 0.2 and
0.5. Figures 7 and 8 present the reconstructed velocity components u}, u’y‘ and the vorticity
o} obtained from the T2F and T2F+PINN models, respectively, for a representative test
case under each noise level. At the low noise level (n=0.1), the T2F+PINN model
achieves lower reconstruction errors in uy (0.080 versus 0.097) and @} (0.613 versus
0.819), while yielding a slightly higher error in u; compared with the T2F model (see
figures 7a—c and 8a—c). As the noise level increases to = 0.2, the T2F model experiences
substantial degradation in velocity reconstruction, with relative error increases of 85.6 %
for uy and 146 % for u}. In contrast, the T2F+PINN model exhibits improved robustness,
with smaller error increases of 65.0 % and 42.1 % for u} and u;, respectively. For the
vorticity field, the T2F+PINN model shows only a 14.0 % increase in error, compared
with a 28.0 % increase for the T2F model (see figures 7d—f and 8d—f). Under high
noise levels (n=0.5), both models fail to reconstruct coherent vortex structures, with
large errors across all fields. Nevertheless, the T2F+PINN model continues to yield
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Figure 8. Reconstruction results of the T2F4+PINN model under the same input noise levels as in figure 7:
(a—c) horizontal velocity u}, vertical velocity u; and vorticity a)j at a noise level of n=0.1; (d—f)
reconstructions at n = 0.2; and (g—i) reconstructions at n = 0.5. Listed values denote the L, error €.
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Figure 9. Normalised L errors € of the reconstructed (a) uZ, (b) u; and (¢) w} as functions of input noise
levels n, for the T2F and T2F+PINN models in the cylinder wake.

relatively lower errors in o}, reflecting its superior resilience to noise (see figures 7g—i and
8g—i). In summary, as noise levels increase, the T2F model exhibits a significant decrease
in reconstruction accuracy, especially for vorticity, whereas the T2F+4PINN model
maintains more stable performance across a wide range of noise levels.

We further assess the influence of input noise on the T2F and T2F+PINN models by
computing the average reconstruction error over the entire test set consisting of nyes =
1000 samples. Figure 9 presents the variation of the normalised L, error € with respect to
the noise amplitude 7 for the velocity components u} and u; as well as the vorticity @}. As
shown in figure 9(a,b), the T2F model exhibits slightly lower reconstruction errors for u}
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and u; at low noise levels (n < 0.1). However, its performance degrades more rapidly as
noise increases, resulting in error levels comparable to those of the T2F+PINN model
at higher noise (n=0.5). In contrast, the T2F+PINN model displays a more gradual
increase in error, demonstrating enhanced robustness in reconstructing primitive variables
under noisy input conditions. For the vorticity field (figure 9¢), the T2F4+PINN model
consistently outperforms the T2F model across all noise levels. Its error increases at a
slower rate, indicating that the incorporation of physics-based constraints via the PINN
framework effectively mitigates the degradation in gradient-based quantities caused by
input noise. These findings confirm that although both models are affected by noise in
the input trajectories, the T2F+PINN model exhibits superior robustness, particularly
in reconstructing derived flow features such as vorticity. Similar robustness of physics-
informed loss function has also been demonstrated in classical flow-specific MLSR tasks
(Fukami et al. 2023).

4. Flow field reconstruction in Rayleigh-Bénard convection
4.1. Simulation settings

The RB convection is a canonical system for modelling buoyancy-driven flows in the
atmosphere and oceans (Lohse & Xia 2010; Chilla & Schumacher 2012; Xia 2013; Wang
et al. 2020a; Lohse & Shishkina 2023, 2024; Xia et al. 2023, 2025). In RB convection,
thermal plumes emerge from the thermal boundary layers near the hot and cold walls and
subsequently interact to form a coherent large-scale circulation structure. We simulate RB
convection under the Oberbeck—Boussinesq approximation, wherein temperature is treated
as an active scalar that modulates the velocity field via a buoyancy force. The governing
equations for the RB convection system are given by

V.ou=0, (4.1)
u 1 2 A~
¥+u.Vu:—p—VP+vV u—+gBr(T —Ty)y, 4.2)
0
oT 5
U VT =ar VT, (4.3)

where u = (u,v), P and T denote the velocity, pressure and temperature fields,
respectively; pg and Ty are the reference density and temperature, respectively; y is the
unit vector in the direction of gravity; g is the gravitational acceleration; and v, 87 and ar
represent the kinematic viscosity, thermal expansion coefficient and thermal diffusivity,
respectively. With the following scaling:

t

u
=X =L =L (4.4)
H v H/(gBrAT) V&BrHAT
P T —T
e —, t= °, 4.5)
po8PTATH At
the governing equations can then be rewritten in dimensionless form as
V.u"=0, (4.6)
ou* \/ﬁ
“Vut = —VP* + [ —V2u* + T*, 4.7
ar* tu " + Ra wt S

aT* [
VT* = V2T*, 4.8
ot* tu Pr Ra (4.8)
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Figure 10. Trajectories of agents navigating from the initial region (red) to the terminal region (blue) in RB
convection. The background contours show the instantaneous temperature field, highlighting thermal plumes
and large-scale circulation structures.

Here H is the cell height and it is chosen as the characteristic length; 1y = /H /(gBrAT)
is the free-fall time and it is chosen as the characteristic time; Ty is the temperature of
the cooling walls; and At is the temperature difference between the heating and cooling
walls. The system is characterised by two dimensionless numbers, the Rayleigh number
(Ra) and the Prandtl number (Pr), defined as
3
Rq=SPTATH YV (4.9)
vor or
We employ the finite-volume solver OpenFOAM (Weller et al. 1998) and cross-
validate the results against our in-house lattice Boltzmann solver (Xu & Li 2023, 2024)
for RB convection at Rayleigh number Ra = 10® and Prandtl number Pr=0.71. The
computational domain is set to [2H, H], corresponding to an aspect ratio I" = 2. The
domain is discretised using a uniform grid with a resolution of 1024 x 512. The simulation
was carried out for a total of 200 free-fall times with an adaptive time step ensuring the
Courant—Friedrichs—Lewy number < 0.3. To eliminate transient effects, the initial 167
free-fall times were discarded as spin-up. Subsequently, snapshots were recorded every
0.01 free-fall times. For training and testing, we used 1000 frames, corresponding to
the statistically stationary interval between 167 and 177 free-fall times. A representative
snapshot of the temperature field is shown in figure 10, where thermal plumes emerging
from the top and bottom boundaries are clearly visible. These plumes self-organise into
two oppositely rotating large-scale circulations, characteristic of RB convection at this
parameter regime (Lohse & Shishkina 2023, 2024; Shishkina & Lohse 2024).

4.2. Migration of self-propelling agents

Using the simulated flow field, we trained the self-propelling agents via reinforcement
learning to generate ny,; = 100 trajectories, following the same navigation protocol as
described in the cylinder wake case (see §3). The resulting trajectories are shown in
figure 10. Agents are initialised in a designated region near the lower-left corner of the
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domain. They are initialised, advected upward by the ascending hot plumes, traverse the
bulk of the convection cell and subsequently descend along the cold plumes near the cell
centre, eventually accumulating in a terminal region near the upper-right corner. These
trajectory patterns are consistent with previous findings in a I” = 2 convection system (Xu,
Wu & Xi 2022), which highlight the agents’ ability to actively exploit thermal structures
in the environment for efficient navigation (Akos et al. 2010; Shepard 2025).

4.3. Evaluation of the T2F and T2F+PINN models

Inspired by previous studies on navigation in fluid environments, which highlight the
importance of velocity (Gunnarson et al. 2021; Jiao et al. 2025) and temperature fields
(Xu et al. 2022, 2023), we focus on reconstructing the horizontal and vertical velocity
components uy, uy and the temperature field 7. These three variables are treated
as separate channels in the model’s input and output, corresponding to C = 3. From
the reconstructed velocity and temperature fields, we further compute gradient-related
quantities, including the out-of-plane vorticity w, =V x u, the horizontal temperature
gradient 9,7 and the Q value defined as Q = (|| 2 > — ||S||2)/2. Here, £ =[Vu —
(Vu)T1/2 is the antisymmetric vorticity tensor and S = [Vu + (Vu)T1/2 is the symmetric
strain-rate tensor. The training and testing configurations follow those used in the cylinder
wake reconstruction (see § 3). Specifically, we generate n,,; = 100 agent trajectories via
point-to-point migration, and extract 714, = 1000 training samples and 7.5 = 1000 test
samples to evaluate model performance.

Figure 11 presents reconstruction results for the primitive flow variables, including
the velocity components uy, uy and the temperature field 7, while figure 12 shows
the reconstruction of gradient-related quantities, including the vorticity w}, horizontal
temperature gradient d,+T™* and the Q value Q%, for a representative input sample using
both the T2F and T2F+PINN models in the RB convection system. The numerical values
shown beneath each reconstructed field indicate the corresponding normalised L error €.
We can see that both models successfully capture the spatial flow structures. Specifically,
the differences in reconstruction errors of u} and u? between the two models are within
1 % (see figure 11d,e,g,h). However, the temperature field reconstructed by the T2F+PINN
model exhibits an error approximately 57 % higher than that of the T2F model (see
figure 11f,i), suggesting that the T2F model is more effective at reconstructing primitive
physical variables in this case. Nevertheless, the T2F model displays noticeable blurring in
the reconstructed velocity and temperature fields, which leads to degraded accuracy in the
derived gradient-related quantities (see figure 12d—f). In contrast, the T2F4+PINN model
mitigates such artefacts by incorporating physical constraints from the governing equations
during training, resulting in flow reconstructions that are more physically consistent with
the underlying dynamics (see figure 12g—i). The representative sample captures the cold
plume located near the centre of the RB convection domain, which is an important feature
for flow perception and environment inference by navigating agents (Xu, Wu & Xi 2023).
It is worth noting that in this specific case, the T2F model achieves a slightly lower error
in the reconstructed temperature gradient. This discrepancy is attributed to stochastic
variability within the test dataset rather than indicating a consistent performance trend.
To illustrate the dynamic reconstruction process of the T2F model for RB convection, the
corresponding video can be viewed in supplementary movie 2.

Figure 13 presents the evolution of the normalised L, error with respect to training
epochs for both the T2F and T2F+PINN models, evaluated over all n4,;; = 1000 samples
in the test set. We consider both the primitive variables u}, u% and T* (see figure 13a—c),

)
as well as the gradient-related quantities including the vorticity o}, the horizontal
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Figure 11. Reconstruction results of the T2F and T2F+PINN models for a representative input in RB
convection. Ground-truth fields of (a) horizontal velocity u¥, (b) vertical velocity u; and (c) temperature T*.
(d—f) Reconstructions by the T2F model. (g—i) Reconstructions by the T2F+PINN model. Listed values denote
the normalised L, error €.

temperature gradient d,+7* and the Q value Q* (see figure 13d—f). For the primitive
variables, both models exhibit a decreasing trend in reconstruction error as training
progresses. The T2F model reaches a final normalised L, error of approximately 0.09
for u¥, 0.08 for u§ and 0.21 for T* at 10000 epochs. The corresponding values for
the T2F+PINN model are 0.09, 0.07 and 0.21, respectively. For the gradient-related
quantities, the T2F+PINN model consistently outperforms the T2F model. At 10000
training epochs, the T2F+PINN model achieves relative reductions in normalised Lj error
of 33.3% for w}, 31.6 % for 0,«T* and a substantial 60.1 % for Q*. These quantities
involve spatial derlvatlves and are therefore more sensitive to local field smoothness
and physical consistency, which are better preserved by the physics-informed constraints
embedded in the T2F+PINN model. These results show that in the RB convection system,
the T2F+PINN model excels in reconstructing gradient-based quantities, while the purely
data-driven T2F model shows minor advantages in reconstructing primitive variables. To
demonstrate that the model has reached convergence, we also provide the corresponding
training and validation loss curves in Appendix B. Those conclusions obtained for the I" =
2 RB convection system are expected to generalise to larger I systems; where the number
of convection rolls increase with I" (Wang et al. 2020b), and the agents migrate a longer
distance in the horizontal direction to mimic the behaviour of long-distance-migrating
birds or patrolling UAVs (Xu et al. 2023).

We also test the influence of input noise on the T2F and T2F+PINN models
by computing the average reconstruction error over the entire test set, consisting of
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Figure 12. Reconstruction results of gradient-based quantities in RB convection. Ground-truth fields of
(a) out-of-plane vorticity w}, (b) the horizontal temperature gradients 07*/dx* and (c) the Q value Q*.
(d—f) Reconstructions by the T2F model. (g—i) Reconstructions by the T2F4+PINN model. Listed values denote
the normalised L, error €.
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Figure 13. Evolution of the normalised L, errors over training epochs for the T2F and T2F+PINN models in
RB convection. (a—c) The primitive variables uy, u} and T*. (d-f) The gradient-based quantities }, 37*/9x*
and Q*. Results are compared between the T2F and T2F-+PINN models.
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Figure 14. Normalised L errors € of the reconstructed primitive variables (a) u}, (b) u"v‘ and (¢) T*, and
gradient-based quantities (d) w}, (¢) 37*/dx* and (f) Q* as functions of input noise levels #, for the T2F and
T2F+PINN models in RB convection.

nesr = 1000 samples in RB convection. Noise is added to the input variable in the test
set, which consists of the velocity components (uy, uy) and temperature 7, following
the procedure described in § 3. Figure 14 shows the variation of the normalised L,
error € with respect to the noise amplitude n for primitive variables u}, u;, T*, and
for the gradient-based quantities @}, d7*/0x*, Q*. As shown in figure 14(a—c), both
models exhibit a gradual increase in error for the primitive variables as the noise level
rises, and their performance remains broadly comparable across the full range of 7.
In contrast, for the gradient-based quantities (see figure 14d—f), the T2F+PINN model
consistently outperforms the T2F model, with its error increasing at a slower rate. These
results are consistent with the findings in the cylinder wake case (see figure 9), where
the T2F+PINN model demonstrates enhanced robustness in reconstructing gradient-based
quantities under noisy input conditions.

Next, we investigate the robustness of the T2F and T2F+PINN models under varying
patch size [, for the RB convection case. The results for the T2F and T2F+PINN models
for [, =1, 2, 4 and 8 grid points are shown in table 2. Similar to the result in the
cylinder wake, the reconstruction errors for both models remain relatively stable across
different patch sizes. The T2F model exhibits a maximum variation of about 9 % in
the reconstruction errors of u?, u; and T*, and the T2F+PINN model shows a slightly
larger maximum variation of about 18 % in the reconstruction errors. Overall, the T2F and
T2F+PINN models demonstrate robust performance across a range of patch sizes in the
RB convection case as well.

Finally, we examine how sensitive the reconstructions are to changes in the control
parameters of the RB system. Additional RB simulations are performed with Rayleigh
numbers spanning Ra = 107-10° and aspect ratios ranging from I" = 1 to 8, while holding
Pr=0.71 fixed. As shown in Appendix C, a model trained on a single reference case (here
Ra =108, I =2 with no-slip sidewalls) does not transfer reliably to flows at different Ra,
I" or wall conditions. Direct application to new configurations yields large normalised
L, errors and often misses the correct large-scale structures. In contrast, retraining
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T2F model T2F+PINN model
Patch size [,, uy u T* uy u T*

0.093 0073 0209 0.094 0072 0.202
0.097 0.080 0219  0.091 0.071 0.215
0.094 0076 0212 0.084 0073 0217
0.088 0.079 0210 0.078 0.066  0.194

00 A —

Table 2. Normalised L, errors of the reconstructed velocity components and temperature fields in RB
convection for different patch sizes /,. The results are averaged over ny5 = 1000 test samples.

on the target configuration consistently restores accuracy, typically reducing errors by
approximately an order of magnitude. These observations indicate that the present models
mainly encode trajectory—flow correspondences specific to the training regime, so accurate
reconstructions in practice require retraining (or at least fine-tuning) on flows with similar
dynamical characteristics.

5. Conclusion

In this work, we proposed a deep-learning model, T2F, for reconstructing flow fields
from sparse, localised trajectories of actively navigating Lagrangian agents. The model
adopts an encoder—decoder architecture, where a ViT encoder captures both local and
long-range temporal dependencies in agent motion, and a CNN decoder reconstructs
the corresponding spatial flow structures. This design enables the extraction of rich
spatiotemporal representations from limited Lagrangian input. To enhance physical
fidelity, we further developed a physics-informed variant, the T2F4+PINN model, by
augmenting the data-driven loss with equation residuals derived from the governing
physical laws. This integration of physics-based knowledge into the training process
promotes reconstructions that are not only data-consistent but also dynamically coherent.

We first validated the model using a laminar cylinder wake flow as a proof-of-concept
test. The T2F model demonstrated high accuracy in reconstructing the velocity field,
while the T2F+PINN model significantly improved the reconstruction of vorticity. The
T2F model outperformed the T2F+PINN model in estimating primitive variables due
to its purely data-driven optimisation, whereas the T2F+PINN model achieved greater
accuracy in reconstructing gradient-based quantities by incorporating physical constraints.
Under varying levels of input noise, the T2F+PINN model exhibited enhanced robustness,
showing markedly lower error growth in vorticity reconstructions even under strong input
perturbations.

We then applied the model to turbulent RB convection, which is a paradigm system
for convective flow in the atmosphere and oceans. Both the T2F and T2F+PINN models
accurately reconstructed the primitive variables u}, u? and T*, but exhibited markedly
different performance in gradient-related quantities. Tﬁe T2F+PINN model consistently
achieved superior reconstruction accuracy in vorticity, temperature gradients and the Q
value, outperforming T2F by up to 60.1 % in normalised L, error. These results highlight
the capability of the T2F model to infer temperature and velocity structures in regions
adjacent to sparse Lagrangian trajectories, while the T2F4-PINN model offers a robust
solution for applications requiring accurate inference of physically derived quantities.

Beyond demonstrating reconstruction accuracy, our results provide broader insights
into Lagrangian sensing and data-driven flow reconstruction in turbulent environments.
We open a promising avenue for real-time, physics-consistent inference of flow structures
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from sparse, localised observations. Owing to its data efficiency and robustness, the
proposed model is particularly well suited for environmental perception tasks in scenarios
where global field measurements are unavailable, such as soaring flight or underwater
navigation. Looking ahead, our models can be extended to dynamic flow environments
by incorporating online-learning strategies that adapt a pre-trained model using only
physics-based loss functions, thereby eliminating the need for additional labelled data. It
is also worth mentioning that the recently developed novel knowledge-integrated additive
approach by Zhang et al. (2025) sheds light on the integration of physics and machine
learning, and may enhance reconstruction by additively embedding domain-specific
physical constraints directly into our T2F model.

Supplementary movies. Supplementary movies are available at https://doi.org/10.1017/jfm.2025.11033.
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Appendix A. The T2F model architecture

Here, we provide a detailed description of the T2F model architecture, which is based on
a ViT encoder and a CNN decoder.

(i) Tokenisation, patch embedding and position embedding.

The ViT processes the input tensor as follows. For each instant t =1, ..., [;, the ViT
extracts a local spatial patch of size [, x [, with C physical variables. Flattening this

patch yields a vector of length d, = II%C , referred to as a token. Collecting tokens across

all time steps I; produces the input tensor Xpken € Rl *dp  This input tensor is then linearly
projected into a higher-dimensional space through a linear layer, a process referred to as
patch embedding. The transformation is expressed as

Xembed = Xtoken We + be, s dexdg’ be € Rdea (A1)

where d, is the embedding dimension, W, is a learnable weight matrix and b, is a
learnable bias vector (broadcast and added to each token). Finally, a sequence of I,
learnable positional embeddings is added to incorporate temporal positional information,
yielding

Xpos = Xembed + Pe> Pe € Rlrxde , (A2)

where p, is a learnable positional embedding matrix.

(i1) Vision transformer encoder.

The ViT contains n4,s subencoder layers. After patch and positional embedding, the
first subencoder layer takes xp,s as input, and its output is subsequently passed to the
next subencoder layer. Each subencoder layer employs multi-head self-attention (MSA) to
extract spatiotemporal features from the input x;j,.
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The MSA layers compute the attention scores between all pairs of input tokens. The
computation is performed across i heads in parallel. For each head 4;, the input tensor x;,
is projected into three matrices:

Qi =xiuWo,, Ki=xuWk,, Vi=xi,Wy, (A3)

where Wo,, Wk, and Wy, are learnable weight matrices for the query, key and value
matrices, respectively. The attention scores are then computed as

. 0K ,'T
Attention(Q;, K;, V;) = softmax Nz Vi, (A4)
k

where dj is the dimension of the key vectors. The outputs of all heads are concatenated
and projected back to the original input dimension:

Xamn = concat(Zy, Zy, ..., Zy)Wo, (AS)

where Z; = Attention(Q;, K;, V;) and Wy is a learnable weight matrix.

Each MSA layer is followed by a feed-forward network (FFN) with layer normalisation.
The FEN applies a nonlinear transformation consisting of two linear layers with a ReLU
activation function:

xrrN = ReLU(Xgstn WrEENT + bFFNT) WEFN2 + DEEN2, (A6)

where Wrpy; and Wrpp, are learnable weight matrices, and brry; and bpry» are learnable
bias vectors. The final output of the layer is normalised as

Xour = LayerNorm(xin + XFrn), (A7)

where LayerNorm normalises each token’s feature vector across the embedding dimension
by computing its mean and variance. The final output of the ViT encoder is a tensor,
xyir € Rlt*de | which represents a latent embedding of the input sequence. This latent
representation is a learned feature with no explicit physical meaning. For further details of
the ViT, we refer the reader to Dosovitskiy et al. (2021).

(iii) Convolutional neural network decoder.

The output xy;r is linearly projected and reshaped to a three-dimensional tensor of
shape 0 x ly0 x Cp, where Cy is the number of channels. This reshaped tensor is then
processed by ncyy transposed convolutional layers, each followed by a ReLU activation
function. These transposed convolutional layers upsample the feature maps to the desired
output resolution. For an input x € R”in*WinxCin the transposed convolution operation is
defined as

Cin—1 Hip—1 Wi —1
Yeuli i1=Y . Y D xeylm, nIWennlcin, Couss i —ms+p. j —ns + pltbe,,.

cin=0 m=0 n=0

(A8)

where y.,,[i, j]is the output feature map at channel c,,, and location (7, j). The kernel
Wenn has shape Ci, x Coyr X K x K, with K the kernel size, s the stride and p the
padding along height and width.

The final transposed convolutional layer is followed by a standard convolutional layer
to produce the output tensor. For an input x € R7in*WinxCinthe convolution operation is
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Hyperparameter Value
Input trajectory length /; 50
Patch size [, 2
Number of subencoder layers 7,4 2
Embedding dimension d, 256
Number of attention heads & 8
Attention dropout rate 0.1
Number of transposed convolutional layers ncyy 3
Decoder output resolution /, 128
Batch size 256
Learning rate 1 x 104
Number of training epochs 10000

Table 3. Hyperparameters used in the T2F and T2F+PINN models.

¢ =128 C, =64
Cy=64
Transposed Transposed
convolution convolution
Ko=4 K, =4
lo=16 so=2 s7=2
w0 0 L, =32 ! 1,=64
Po=1 p =1
C;=32
Transpoged Convolution
convolution -
————————————————
: i
K3 - 4 K4 = 1 :
[}
s3=2 s;=1 !
py=1 ;=128 Pa=0 :L

Figure 15. Architecture of the CNN decoder in the T2F model. The transposed convolutional layers
progressively upsample the feature maps to the target resolution /,,.

given by

Cin—1K—-1K-1
ycoul‘[i’ -]] = Z Z Z ijn[is - p+m’ js_ p +n] WCNN[COMl‘v Cin» m, n] +bC0m’

cin=0 m=0 n=0

(A9)

with notations consistent with those of the transposed convolution. Further details of these
operations are provided in Li et al. (2021).

The final output is a tensor xcyy of shape [, x [, x C, where [, is the output resolution
and C is the number of channels (C =2 for the cylinder wake and C =3 for RB
convection). The detailed parameters of each layer are shown in figure 15.

The hyperparameters of the T2F and T2F4-PINN models are summarised in table 3,
including the input trajectory length, patch size, number of transformer layers and
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(a) (b)
— Training loss — Training loss
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Figure 16. Evolution of the training loss and validation loss for (@) T2F model and (b) T2F+PINN model in
the cylinder wake case.

(@) (b)

— Training loss
—— Validation loss

102 F

6 Lo ! ! . .
10 0 5000 10000 0 5000 10000

Epoch Epoch

Figure 17. Evolution of the training loss and validation loss for (@) T2F model and (») T2F+PINN model in
the RB convection case.

attention heads, CNN layers, batch size, learning rate and number of training epochs.
With these settings, the T2F model contains approximately 2.1 x 108 trainable parameters
(=811 MB). The computational cost for training a single T2F model takes about 4 h on an
NVIDIA P100 GPU (16 GB).

Appendix B. Convergence of the T2F and T2F+PINN models

Here we provide the temporal evolution of both the training and validation losses
for the T2F and T2F+PINN models in the cylinder wake case (see figure 16). For
completeness, the corresponding loss histories for RB convection have also been
included (see figure 17). Both figures show that, for both models, the validation
losses decrease and then plateau after approximately 2000 epochs, indicating that the
optimisation reaches a stable minimum. This demonstrates that the training of the T2F
and T2F+PINN models converges satisfactorily, and that the fluctuations observed in
figure 6(a,b) reflect variations in test-set performance rather than instability of the training
process.
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RB convection flow configurations Averaged normalised L, error
Ra r Wall type Generalisation Retrain
108 2 Periodic 0.957 0.111

Table 4. Averaged reconstruction Ly error over 1000 test samples for generalisation and retraining in an RB
cell with Ra = 108, I" = 2 and periodic boundary condition for sidewalls.

B
0.047 0.698

Figure 18. (a) Trajectories of self-propelling agents and temperature contours in an RB cell with I =2 and
periodic boundary condition on the sidewalls. (b) Ground-truth field of horizontal velocity u} for a typical
sample. (c) Reconstruction from the retrained model. (d) Reconstruction from the generalised model. Listed
values indicate the normalised L, error.

Appendix C. Robustness of the T2F model across different RB convection

The control parameters in the RB convection system include the Rayleigh number Ra,
the Prandtl number Pr and the aspect ratio I". To assess the robustness of the T2F model
across different RB convection, we conducted additional simulations in which we either
apply the same trained T2F model (see § 4, trained on Ra = 108, Pr=0.71, I’ =2, no-
slip sidewalls) to different RB configurations (hereafter referred to as ‘generalisation’),
or retrain the model on each new configuration (hereafter referred to as ‘retrain’). The
reconstruction accuracy was assessed using the normalised L, error of the velocity
components u}.

Case (i). Similar flow field with plumes rising in the middle.

We replaced the no-slip sidewalls with periodic boundary conditions and selected a
time period with central plume upwelling for testing. Figure 18 shows the corresponding
trajectories and reconstruction results. As summarised in table 4, the generalised model
failed to reproduce the correct flow structures, whereas the retrained model achieved
accurate reconstructions.
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RB convection flow configurations Averaged normalised L error
Ra r Wall type Generalisation Retrain
108 1 No-slip wall — 0.056

Table 5. Averaged reconstruction Ly error over 1000 test samples for generalisation and retraining in an RB
cell with Ra=10% and I" = 1.

(b)
1.0 0.40
0.5 0.15
0 -0.10

0.053

Figure 19. (a) Trajectories of self-propelling agents and temperature contours in an RB cell with I" =1.
(b) Ground-truth field of horizontal velocity u} for a typical sample. (¢) Reconstruction from the retrained
model. Listed values indicate the normalised L, error.

(@) 1.0

0.5

(b) (0
0.20 -

’yi.. /
B o, = u

0.218 1.265

Figure 20. (a) Trajectories of self-propelling agents and temperature contours in an RB cell with Ra = 108
and I" = 8. (b) Ground-truth field of horizontal velocity u} for a typical sample. (c¢) Reconstruction from the
retrained model. (d) Reconstruction from the generalised model. Listed values indicate the normalised L3 error.

Case (ii). Flow transition from double rolls to a single large roll.

We set the aspect ratio I' =1, where the flow exhibits a single-roll state. Due to
the reduced domain size, only shorter trajectories were available, making generalisation
infeasible. As shown in figure 19 and table 5, reliable reconstruction was achieved after
retraining.

Case (iii). Different aspect ratios and/or Rayleigh numbers.
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RB convection flow configurations Averaged normalised L»
error

Ra r Wall type Generalisation Retrain
108 4 No-slip wall 1.132 0.161
108 8 No-slip wall 1.008 0.143
107 2 No-slip wall 1.628 0.064
2 % 107 2 No-slip wall 1.850 0.182
5 % 107 2 No-slip wall 1.807 0.138
2 % 108 2 No-slip wall 1.021 0.100
5% 108 2 No-slip wall 0.898 0.116
10° 2 No-slip wall 1.138 0.115

Table 6. Averaged reconstruction Ly errors over 1000 test samples for generalisation and retraining in RB
cells with different aspect ratio I" and Rayleigh number Ra.

1.0
0.5
0
0.30
0.57 0.15
0.44 . A ‘ 0
0.037 0.756

Figure 21. (a) Trajectories of self-propelling agents and temperature contours in an RB cell with Ra = 10°
and I" =2. (b) Ground-truth field of horizontal velocity u} for a typical sample. (c) Reconstruction from the
retrained model. () Reconstruction from the generalised model. Listed values indicate the normalised L, error.

We tested cases with aspect ratio I =4—8 and Rayleigh number Ra ranging from
107 to 107 (see figures 20 and 21 and table 6). Across these conditions, generalisation
errors remained large, while retrained models consistently reduced errors by an order of
magnitude.
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