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A B S T R A C T

We present a systematic evaluation of an interpolation-supplemented lattice Boltzmann method (ISLBM) for
simulating buoyancy-driven thermal convection on non-uniform meshes. The ISLBM extends the standard
lattice Boltzmann framework by incorporating quadratic interpolation during the streaming step, enabling
flexible mesh refinement near solid boundaries while maintaining algorithmic simplicity and parallel scal-
ability. The method is implemented for a two-dimensional side-heated cavity at high Rayleigh numbers
106 ≤ 𝑅𝑎 ≤ 108, and for a three-dimensional side-heated cavity at 105 ≤ 𝑅𝑎 ≤ 107, with the Prandtl number
fixed at 𝑃𝑟 = 0.71. Benchmark results show that the ISLBM accurately captures thermal and velocity boundary
layers, yielding Nusselt and Reynolds numbers in close agreement with high-fidelity reference data. Grid-
convergence studies demonstrate nearly third-order accuracy for global quantities and about second-order for
local fields. We further assess the computational performance of the in-house LBM solver against two open-
source solvers: Nek5000 based on the spectral element method, and OpenFOAM based on the finite volume
method. Performance metrics, including million lattice updates per second (MLUPS) and wall-clock time per
dimensionless time unit (WCTpDT), indicate that the ISLBM offers one to three orders of magnitude higher
efficiency in large-scale simulations. On GPU architectures, the ISLBM retains high computational performance:
throughput on non-uniform meshes reaches 60%–70% of that on uniform meshes in terms of MLUPS, while
the cost in WCTpDT is about three times higher. These results highlight the potential of interpolation-based
LBM approaches for high-fidelity simulations of thermal convection on non-uniform meshes, providing a robust
foundation for future extensions to turbulent flows.
1. Introduction

The lattice Boltzmann method (LBM) is a mesoscopic numerical
approach to computational fluid dynamics [1,2], rooted in the Boltz-
mann kinetic theory [3,4]. Instead of directly solving the macroscopic
Navier–Stokes equations, the LBM models the evolution of particle
distribution functions on a discrete lattice [5,6]. From these evolution
equations, macroscopic flow variables such as velocity and pressure
are recovered. This framework provides access to continuum-scale hy-
drodynamics while retaining mesoscopic fidelity. Early developments
of the LBM were inspired by lattice gas automata, but a rigorous
connection to the Boltzmann equation was later established by He and
Luo [7], who derived the lattice Boltzmann equation from the continu-
ous Bhatnagar–Gross–Krook formulation. Over the past three decades,
the LBM has matured into an efficient tool for simulating a wide
range of complex flow phenomena. Its inherent algorithmic simplicity,
local collision-streaming structure, and natural suitability for parallel
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computation [8–10] make it particularly effective for simulating fluid
flows and associated transport processes. As a result, the LBM has
achieved broad success across diverse applications, including turbulent
and multiphase flow simulations [11–19]. This success has positioned
LBM as a compelling alternative to conventional Navier–Stokes-based
solvers, particularly for incompressible flows in the continuum regime.

Our particular interest lies in using the LBM to simulate ther-
mal convection, specifically the coupled fluid flow and heat transfer
processes characteristic of buoyancy-driven systems [20–22]. This fun-
damental mechanism underpins a wide range of natural and engineered
systems, including atmospheric and oceanic convection [22], thermal
management in fuel cells and flow batteries [23], thermal protection
in nuclear reactors [24], and thermal convection in mechanical devices
subjected to vibrations [25]. Accurately simulating thermal convection
at high Rayleigh numbers (𝑅𝑎, defined later) remains a major com-
putational challenge, as strong buoyancy forces significantly influence
https://doi.org/10.1016/j.ijheatmasstransfer.2025.127790
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he flow and heat transfer dynamics. The difficulty arises from the
formation of thin thermal boundary layers, which demand much finer
resolution near solid boundaries than in the bulk flow. As a result,
niform meshes quickly become computationally prohibitive, since

they enforce fine resolution across the entire domain. To overcome
his limitation, it is necessary to extend the conventional LBM (typi-
ally formulated on uniform meshes) to non-uniform meshes refined
ear solid boundaries, where steep velocity and temperature gradients
ccur. Such spatially adaptive meshing enables adequate resolution of
ear-wall structures, such as thermal boundary layers, while preserving
omputational efficiency in the bulk flow region.

Several extensions of the standard LBM from uniform meshes to
on-uniform meshes have been developed to resolve near-wall gradi-
nts without incurring excessive computational cost. A prominent ex-
mple is the interpolation-supplemented LBM (ISLBM) [26–28], which

incorporates interpolation schemes during the streaming step to enable
off-lattice population transfers, thereby allowing non-uniform lattice
spacing while retaining the simplicity of the standard formulation. An-
other widely studied approach is the finite-volume LBM [29–32], which
eformulates the lattice Boltzmann equation within a control-volume

framework, permitting flexible mesh structures while preserving its
inetic foundation. In addition, mesh refinement strategies, such as

block-structured multi-domain methods [33,34] and multilevel (multi-
grid) methods [35,36], have been extensively employed to resolve
ocalized flow features at varying spatial resolutions. These method-
logical advances are particularly relevant as the LBM is increasingly
pplied to simulate thermal convection at high Rayleigh numbers,
here both large-scale circulations and thin boundary layers must be

esolved. Despite their potential, the performance of these methods in
terms of numerical accuracy, stability, and computational efficiency
for thermally driven flows at high Rayleigh numbers have not been
systematically assessed. Therefore, a comprehensive evaluation of their
ccuracy, numerical stability, and efficiency is essential for advancing
igh-fidelity LBM simulations of buoyancy-driven flows.

Due to its conceptual simplicity and its direct extension of the
standard streaming step, we focus here on evaluating the ISLBM. Specif-
cally, we implement and assess the ISLBM for simulating buoyancy-
riven thermal convection at moderately high Rayleigh numbers on
on-uniform meshes. Through systematic benchmarks, we aim to quan-
ify its accuracy and efficiency, thereby laying the groundwork for its
uture application to turbulent thermal systems. The rest of this paper is
rganized as follows. In Section 2, we present the numerical details of
he ISLBM for simulating thermal convection on non-uniform meshes.
n Sections 3 and 4, we present results on laminar thermal convection

in a two-dimensional (2-D) and a three-dimensional (3-D) side-heated
avity, respectively. In Section 5, the main findings of the present work
re summarized.

2. Numerical methods

2.1. The standard LBM for simulating thermal convection on uniform
meshes

We perform direct numerical simulations of thermal convection
nder the Boussinesq approximation. The fluid flow is assumed to be
ncompressible, and temperature is treated as an active scalar that
nfluences the velocity field through buoyancy. Viscous dissipation
nd compression work are neglected, and all transport coefficients are
ssumed constant. The governing equations for the coupled fluid flow
nd heat transfer are

∇ ⋅ 𝐮 = 0 (1)

𝜕𝐮
𝜕 𝑡 + 𝐮 ⋅ ∇𝐮 = − 1

𝜌0
∇𝑃 + 𝜈∇2𝐮 + 𝑔 𝛽 (𝑇 − 𝑇0

)

𝐲̂ (2)

𝜕 𝑇 + 𝐮 ⋅ ∇𝑇 = 𝛼∇2𝑇 (3)

𝜕 𝑡

2 
where 𝐮, 𝑃 and 𝑇 denote the velocity, pressure, and temperature fields,
respectively. The reference density and temperature are denoted by
0 and 𝑇0. 𝜈, 𝛽 and 𝛼 are the kinematic viscosity, thermal expansion
oefficient, and thermal diffusivity of the fluid, respectively. The unit

vector 𝐲̂ points in the direction of gravity. To non-dimensionalize the
equations, we apply the following scalings:

𝐱∗ = 𝐱∕𝐻 , 𝑡∗ = 𝑡∕
√

𝐻∕
(

𝛽 𝑔 𝛥𝑇
)

, 𝐮∗ = 𝐮∕
√

𝛽 𝑔 𝐻 𝛥𝑇
∗ = 𝑃∕

(

𝜌0𝑔 𝛽 𝛥𝑇𝐻
)

, 𝑇 ∗ =
(

𝑇 − 𝑇0
)

∕𝛥𝑇

(4)

where 𝛥𝑇 is the temperature difference between the hot and cold walls.
The characteristic length scale is the cavity height 𝐻 , the characteristic
ime scale is the free-fall time 𝑡𝑓 =

√

𝐻∕(𝛽 𝑔 𝛥𝑇 ), and the characteristic
elocity scale is the free-fall velocity 𝑢𝑓 =

√

𝐻 𝛽 𝑔 𝛥𝑇 . Unless otherwise
stated, dimensionless variables are denoted with a superscript star.

Using these scalings, the dimensionless governing equations become

∇ ⋅ 𝐮∗ = 0 (5)

𝜕𝐮∗
𝜕 𝑡∗ + 𝐮∗ ⋅ ∇𝐮∗ = −∇𝑃 ∗ +

√

𝑃 𝑟
𝑅𝑎

∇2𝐮∗ + 𝑇 ∗𝐲̂ (6)

𝜕 𝑇 ∗

𝜕 𝑡∗ + 𝐮∗ ⋅ ∇𝑇 ∗ =
√

1
𝑃 𝑟𝑅𝑎∇

2𝑇 ∗ (7)

Two dimensionless parameters arise in the system: the Rayleigh number
(𝑅𝑎) and the Prandtl number (𝑃 𝑟), defined as

𝑅𝑎 =
𝑔 𝛽 𝛥𝑇𝐻3

𝜈 𝛼 , 𝑃 𝑟 = 𝜈
𝛼

(8)

The Rayleigh number quantifies the driving buoyancy force relative to
viscous and thermal diffusion, while the Prandtl number represents the
atio of momentum diffusivity to thermal diffusivity.

To solve the thermal convection problem described above, we adopt
a double-distribution-function (DDF) LB model [8,37–41]. Specifically,
a D2Q9 lattice in two dimensions or a D3Q19 lattice in three dimen-
ions is employed to solve the Navier–Stokes equations for fluid flow,

while a D2Q5 lattice in two dimensions or a D3Q7 lattice in three
dimensions is used to solve the energy equation for heat transfer. To
enhance numerical stability, a multi-relaxation-time (MRT) collision
operator is employed for both the density and temperature distribution
functions. The evolution equation for the density distribution function
is

𝑓𝑖(𝐱 + 𝐞𝑖𝛿𝑡, 𝑡 + 𝛿𝑡) − 𝑓𝑖(𝐱, 𝑡) = − (

𝐌−1𝐒
)

𝑖𝑗

[

𝐦𝑗 (𝐱, 𝑡) −𝐦(eq)
𝑗 (𝐱, 𝑡)

]

+ 𝛿𝑡𝐹
′
𝑖

(𝑖 = 0, 1,… , 𝑞 − 1) (9)

where 𝑓𝑖 is the density distribution function, 𝐱 is the spatial position, 𝑡 is
the time, and 𝛿𝑡 is the time step. 𝐞𝑖 is the discrete velocity vector in the
𝑖th direction. For the D2Q9 lattice, 𝑞 = 9; for the D3Q19 lattice, 𝑞 = 19.
The equilibrium moments 𝐦(eq) are given by, for the D2Q9 lattice

𝐦(eq)
D2Q9 = 𝜌

[

1, −2 + 3(𝑢2+𝑣2), 1 − 3(𝑢2+𝑣2), 𝑢, −𝑢, 𝑣, −𝑣, 𝑢2−𝑣2, 𝑢𝑣]𝑇 (10)

and for the D3Q19 lattice,

𝐦(eq)
D3Q19 = 𝜌

[

1, −11 + 19|𝐮|2, 3 − 11
2
|𝐮|2, 𝑢, −2

3
𝑢, 𝑣, −2

3
𝑣, 𝑤,

− 2
3
𝑤, 2𝑢2 − 𝑣2 −𝑤2, −1

2
(2𝑢2 − 𝑣2 −𝑤2), 𝑣2 −𝑤2,

− 1
2
(𝑣2 −𝑤2), 𝑢𝑣, 𝑣𝑤, 𝑢𝑤, 0, 0, 0

]𝑇

(11)

The forcing term 𝐹 ′
𝑖 on the right-hand side of Eq. (9) is computed as

′ = 𝐌−1 (𝐈 − 𝐒∕2)𝐌𝐅̃, where 𝐌𝐅̃ is given by Guo et al. [42,43]. For
the D2Q9 lattice,

𝐌𝐅̃𝐷2𝑄9 =
[

0, 6𝐮 ⋅ 𝐅,−6𝐮 ⋅ 𝐅, 𝐹𝑥,−𝐹𝑥, 𝐹𝑦,−𝐹𝑦, 2𝑢𝐹𝑥 − 2𝑣𝐹𝑦, 𝑢𝐹𝑥 + 𝑣𝐹𝑦
]𝑇

(12)
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and for the D3Q19 lattice,

𝐌𝐅̃𝐷3𝑄19 =
[

0, 38𝐮 ⋅ 𝐅, −11𝐮 ⋅ 𝐅, 𝐹𝑥, −2
3
𝐹𝑥, 𝐹𝑦, −

2
3
𝐹𝑦, 𝐹𝑧, −

2
3
𝐹𝑧,

4𝑢𝐹𝑥 − 2𝑣𝐹𝑦 − 2𝑤𝐹𝑧, −2𝑢𝐹𝑥 + 𝑣𝐹𝑦 +𝑤𝐹𝑧, 2𝑣𝐹𝑦 − 2𝑤𝐹𝑧,

−𝑣𝐹𝑦 +𝑤𝐹𝑧, 𝑢𝐹𝑦 + 𝑣𝐹𝑥, 𝑣𝐹𝑧 +𝑤𝐹𝑦, 𝑢𝐹𝑧 +𝑤𝐹𝑥, 0, 0, 0
]𝑇

(13)

Here, the body force is defined as 𝐅 = 𝜌𝑔 𝛽(𝑇 − 𝑇0)𝐲̂. The macroscopic
density 𝜌 and velocity 𝐮 are obtained via 𝜌 =

∑𝑞−1
𝑖=0 𝑓𝑖, 𝐮 = 1

𝜌 (
∑𝑞−1

𝑖=0 𝐞𝑖𝑓𝑖+
𝐅∕2).

The evolution equation for the temperature distribution function is

𝑔𝑖(𝐱 + 𝐞𝑖𝛿𝑡, 𝑡 + 𝛿𝑡) − 𝑔𝑖(𝐱, 𝑡) = −(𝐍−1𝐐)𝑖𝑗
[

𝐧𝑗 (𝑥, 𝑡) − 𝐧(eq)
𝑗 (𝑥, 𝑡)

]

(𝑖 = 0, 1,… , 𝑞 − 1) (14)

where 𝑔𝑖 is the temperature distribution function. For the D2Q5 lattice,
= 5; for the D3Q7 lattice, 𝑞 = 7. The equilibrium moments 𝐧(eq) are

iven by, for the D2Q5 lattice

𝐧(eq)
D2Q5 =

[

𝑇 , 𝑢𝑇 , 𝑣𝑇 , 𝑎𝑇 𝑇 , 0
]𝑇 (15)

and for the D3Q7 lattice,

𝐧(eq)
D3Q7 =

[

𝑇 , 𝑢𝑇 , 𝑣𝑇 , 𝑤𝑇 , 𝑎𝑇 𝑇 , 0, 0
]𝑇 (16)

Here, 𝑎𝑇 is a parameter related to thermal diffusivity: 𝑎𝑇 = 20
√

3𝛼 − 4
or D2Q5 lattice, and 𝑎𝑇 = 42

√

3𝛼− 6 for D3Q7 lattice. The macroscopic
temperature 𝑇 is then obtained as 𝑇 =

∑𝑞−1
𝑖=0 𝑔𝑖.

In the standard LB model described above, it is implicitly assumed
hat the computational mesh is uniform and that the lattice spacing
atches the distance traveled by the distribution functions in a single

ime step. Under this assumption, the evolution of the density dis-
ribution function (Eq. (9)) can be decomposed into two sub-steps:

Collision step ∶ 𝑓+
𝑖 (𝐱, 𝑡) = 𝑓𝑖(𝐱, 𝑡) −

(

𝐌−1𝐒
)

𝑖𝑗

[

𝐦𝑗 (𝐱, 𝑡) −𝐦(eq)
𝑗 (𝐱, 𝑡)

]

+ 𝛿𝑡𝐹
′
𝑖

(17)

Streaming step ∶ 𝑓𝑖(𝐱 + 𝐞𝑖𝛿𝑡, 𝑡 + 𝛿𝑡) = 𝑓+
𝑖 (𝐱, 𝑡) (18)

where 𝑓+
𝑖 (𝑥, 𝑡) denotes the post-collision density distribution func-

ion. Similarly, the evaluation of the temperature distribution function
(i.e., Eq. (14)) is split into:

Collision step ∶ 𝑔+𝑖 (𝐱, 𝑡) = 𝑔𝑖(𝐱, 𝑡) − (𝐍−1𝐐)𝑖𝑗
[

𝐧𝑗 (𝐱, 𝑡) − 𝐧(eq)
𝑗 (𝐱, 𝑡)

]

(19)

Streaming step ∶ 𝑔𝑖(𝐱 + 𝐞𝑖𝛿𝑡, 𝑡 + 𝛿𝑡) = 𝑔+𝑖 (𝐱, 𝑡) (20)

where 𝑔+𝑖 (𝐱, 𝑡) represents the post-collision temperature distribution
function. Further numerical details on the thermal LB method can be
found in our previous works [8,9,37].

2.2. The interpolation-supplemented LBM for simulating thermal convection
on non-uniform meshes

In this work, we adopt the procedure proposed by He et al. [26–28]
o update the distribution function 𝑓𝑖 and 𝑔𝑖 on a non-uniform mesh.
he key idea is to approximate the values of the distribution functions
t grid points via interpolation from their corresponding values at off-
attice locations. Let 𝐱 = (𝑥𝑖, 𝑦𝑗 ) denote a grid point on an arbitrary
ectangular non-uniform mesh in a Cartesian coordinate system. First,
he collision steps (i.e. Eqs. (17) and (19)) are performed locally at each

grid point, yielding the post-collision distribution functions 𝑓+
𝑖 (𝐱, 𝑡) and

𝑔+𝑖 (𝐱, 𝑡). Next, the virtual streaming steps (i.e. Eqs. (18) and (20)) are
applied to compute the distribution functions at the off-lattice locations
𝐱 + 𝐞 𝛿 , i.e., 𝑓 (𝐱 + 𝐞 𝛿 , 𝑡 + 𝛿 ) and 𝑔 (𝐱 + 𝐞 𝛿 , 𝑡 + 𝛿 ). Unlike the uniform
𝑖 𝑡 𝑖 𝑖 𝑡 𝑡 𝑖 𝑖 𝑡 𝑡 t

3 
mesh case, where 𝐱 + 𝐞𝑖𝛿𝑡 coincides with a grid point, these locations
are generally off-lattice in a non-uniform mesh. At such points, the
alues of 𝑓𝑖(𝐱 + 𝐞𝑖𝛿𝑡, 𝑡 + 𝛿𝑡) and 𝑔𝑖(𝐱 + 𝐞𝑖𝛿𝑡, 𝑡 + 𝛿𝑡) are set equal to the
ost-collision values 𝑓+

𝑖 (𝐱, 𝑡) and 𝑔+𝑖 (𝐱, 𝑡), respectively. These off-lattice
alues are then interpolated back to the nearest grid point 𝐱, providing
he updated distribution functions 𝑓𝑖(𝐱, 𝑡 + 𝛿𝑡) and 𝑔𝑖(𝐱, 𝑡 + 𝛿𝑡). In this
anner, the collision and the streaming steps are repeated iteratively.
o preserve second-order spatial accuracy, a higher-order quadratic

nterpolation scheme following the formulation proposed by He [28]
is employed. This step is essential for consistent and rigorous recovery
of the Navier–Stokes equations within the LBM framework.

Fig. 1 illustrates the interpolation procedure in the ISLBM for a
two-dimensional non-uniform mesh. After the streaming step, the distri-
bution functions generally arrive at off-lattice positions (see blue open
circles). Quadratic interpolation stencils (see red boxes) are then con-
structed from neighboring post-streaming nodes to recover the distribu-
tion function at virtual nodes (see yellow triangles). The interpolated
values at the virtual nodes are subsequently used to reconstruct the
fluid nodes on the mesh (see black filled circles). This process completes
one collision–streaming cycle on a non-uniform lattice.

In the interpolation kernel, the main contributions to the total
omputational cost are as follows. The first is off-lattice memory access,

which requires fetching distribution values from non-contiguous global
memory addresses, leading to irregular and non-coalesced reads. This
constitutes the dominant bottleneck. The second is the evaluation of
interpolation coefficients, which includes on-the-fly computation of
quadratic interpolation weights (e.g., Lagrange polynomial coefficients)
and depends on the degree of local mesh non-uniformity. The third is
stencil selection and indexing, which involves identifying the appropri-
ate neighboring nodes and determining their physical coordinates for
accurate interpolation.

2.3. Boundary conditions and implementation issues

In the ISLBM framework, boundary conditions are implemented
using the same kinetic boundary schemes as in uniform-mesh LBM.
Specifically, the half-way bounce-back scheme is employed to en-
force the no-slip velocity boundary condition, while the half-way anti-
bounce-back scheme is applied for Dirichlet (constant-temperature)
thermal boundaries and the half-way bounce-back scheme for Neumann
(adiabatic) thermal boundaries.

At the fluid-solid interface, the no-slip velocity boundary condition
s imposed using the half-way bounce-back scheme:

𝑓𝑖(𝐱, 𝑡 + 𝛿𝑡) = 𝑓+
𝑖 (𝐱, 𝑡) (21)

where, 𝑓𝑖(𝐱, 𝑡) denotes the density distribution function corresponding
o the discrete velocity 𝐞𝑖 = −𝐞𝑖.

For thermal boundary conditions, the Dirichlet
constant-temperature) case is imposed via the half-way anti-bounce-
ack scheme:

𝑔𝑖(𝐱, 𝑡 + 𝛿𝑡) = −𝑔+𝑖 (𝐱, 𝑡) + 𝜔𝑖𝑇𝑤 (22)

where 𝑇𝑤 is the prescribed wall temperature. For the D2Q5 lattice, the
weights are 𝜔1−4 = (4 + 𝑎𝑇 )∕10; for the D3Q7 lattice, the weights are
𝜔1−6 = (6 + 𝑎𝑇 )∕21. The Neumann (adiabatic) boundary condition is
enforced using the half-way bounce-back scheme:

𝑔𝑖(𝐱, 𝑡 + 𝛿𝑡) = 𝑔+𝑖 (𝐱, 𝑡) (23)

where 𝑔𝑖(𝑥, 𝑡) denotes the temperature distribution function associated
with the discrete velocity 𝐞𝑖.

We now discuss several implementation issues encountered when
ollecting data for post-analysis. The first concerns the distribution of

grid points and the corresponding length scale. Assume convection is
simulated within a cell of length 𝐿 and height 𝐻 . Fig. 2 illustrates
ypical examples of a uniform mesh and a non-uniform mesh with
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Fig. 1. Illustration of the interpolation procedure in the interpolation-supplemented lattice Boltzmann method (ISLBM) on a two-dimensional non-uniform mesh.
(For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)
Table 1
Length scales in the physical system and in the LB systems with uniform and non-
uniform meshes.

Physical system LB system with
uniform mesh

LB system with
non-uniform mesh

Effective cell height 𝐻 m 1 1 − 𝑦∗1
Minimal resolution (1 l.u.) – 1∕𝑁𝑦 𝑦∗1
Characteristic length – 𝑁𝑦 l.u. (1∕𝑦∗1 − 1) l.u.
u
w
s

m

clustering near the walls. For a uniform mesh, the coordinates (taking
the 𝑦-direction as an example) are specified as

𝑦∗0 = 0, 𝑦∗𝑁𝑦+1
= 1, (24)

𝑦∗𝑗 =
𝑗 − 0.5
𝑁𝑦

, 𝑗 = 1,… , 𝑁𝑦 (25)

where the indices 1 and 𝑁𝑦 correspond to the fluid nodes nearest to
he solid walls (denoted by the black circles in Fig. 2a). The spatial

resolution is uniform, with 𝛥𝑦∗ = 1∕𝑁𝑦 = 1 l.u., where ‘‘l.u’’. denotes
the lattice length unit [44]. Because the half-way bounce-back (or half-
way anti-bounce-back) scheme is applied at the fluid-solid boundaries,
the first layer of fluid nodes, 𝑦∗1 and 𝑦∗𝑁𝑦

, are offset by 0.5 l.u. from the
solid walls (denoted by the red lines at 𝑦∗0 = 0 and 𝑦∗𝑁𝑦+1

= 1). This offset
arises naturally from the half-way formulation and holds regardless of
whether the mesh is uniform or non-uniform.

For non-uniform meshes, the coordinates (taking the 𝑦-direction as
an example) are given by the error-function stretching [45]:

𝑦∗𝑗 = 1
2

⎧

⎪

⎪

⎨

⎪

⎪

⎩

𝑒𝑟𝑓
[

𝑎
(

𝑗
𝑁𝑦+1

− 0.5
)]

𝑒𝑟𝑓 (𝑎∕2)
+ 1

⎫

⎪

⎪

⎬

⎪

⎪

⎭

, 𝑗 = 0, 1,… , 𝑁𝑦 + 1 (26)

where the indices 1 and 𝑁𝑦 correspond to the fluid nodes nearest to the
solid walls, and the minimal spatial mesh spacing is (𝛥𝑦∗)𝑚𝑖𝑛 = 𝑦∗1 = 1
l.u. Unlike the uniform case, the solid walls (denoted by the red lines
in Fig. 2b) are located at 𝑦∗𝑏𝑜𝑡𝑡𝑜𝑚 = 0.5𝑦∗1 and 𝑦∗𝑡𝑜𝑝 = 1 − 0.5𝑦∗1, so the
effective cell height is 1 −𝑦∗1. As marked in Fig. 2(b), the offset between
the boundary (red line) and the first fluid node (black circle) is 0.5 l.u.
 summary of the length scales in the LB systems with uniform and
on-uniform meshes is presented in Table 1.

In the stretching error function (i.e. Eq. (26)), 𝑎 is a positive co-
efficient that controls the degree of stretching. In this work, we set
𝑎 = 1.5 unless otherwise specified. A larger value of 𝑎 produces a
more pronounced S-shape in the error function; consequently, mesh
points are more densely packed near the boundaries and more sparsely
distributed in the interior. Conversely, a smaller value of 𝑎 makes the
4 
error function vary more linearly across the domain. As 𝑎 approaches
zero, the coordinate distribution 𝑦∗𝑗 approaches 𝑗∕𝑁𝑦+1, corresponding
to a uniform mesh. To ensure the robustness of our mesh design, we
quantitatively evaluated its quality using two widely accepted metrics.
The first metric is the growth rate, defined as the ratio of adjacent
cell sizes (e.g., 𝛥𝑥𝑖+1∕𝛥𝑥𝑖). Excessive growth rates can compromise
numerical accuracy and stability. In our simulations with a 513 × 513
mesh and stretching parameter 𝑎 = 1.5, the maximum growth rate is
1.0044, indicating a very smooth grid transition. This value is well
below the commonly accepted upper threshold of 1.2, ensuring high
interpolation fidelity. The second metric is the aspect ratio, defined as
the ratio of the longest to the shortest side of a computational cell.
While elevated aspect ratios may be acceptable near boundary layers,
where flow features are anisotropic, they are undesirable in core-flow
regions. In our simulations, the maximum aspect ratio is 1.75, observed
near the four boundaries. This value remains well within acceptable
limits for structured grid-based simulations.

The second issue concerns the calculation of derivatives of flow
variables at solid walls. The boundary schemes remain valid on non-
niform meshes, provided that the first fluid node adjacent to the
all is located 0.5 lattice units from the physical boundary. This half-

pacing offset must be accounted for in derivative calculations. As
shown in Fig. 2(a), for a uniform mesh the first-order derivative of a
flow variable 𝜙 at the wall is evaluated using a one-sided second-order
finite-difference scheme:

𝜕 𝜙
𝜕 𝑦 |𝑏𝑜𝑡𝑡𝑜𝑚 =

−8𝜙𝑤𝑎𝑙 𝑙 + 9𝜙1 − 𝜙2
3𝛥𝑦

,
𝜕 𝜙
𝜕 𝑦 |𝑡𝑜𝑝 =

8𝜙𝑤𝑎𝑙 𝑙 − 9𝜙𝑁𝑦
+ 𝜙𝑁𝑦−1

3𝛥𝑦

(27)

where 𝛥𝑦 = 1 l.u. is the minimal spatial resolution. For non-uniform
eshes, the first-order derivative of 𝜙 at the wall is expressed as

𝜕 𝜙
𝜕 𝑦

|

|

|

|bottom
=

−4𝑞(𝑞 + 1)𝜙wall + (2𝑞 + 1)2𝜙1 − 𝜙2
𝑞(2𝑞 + 1)𝛥𝑦 ,

𝜕 𝜙
𝜕 𝑦

|

|

|

|top
=

4𝑞(𝑞 + 1)𝜙wall − (2𝑞 + 1)2𝜙𝑁 + 𝜙𝑁−1
𝑞(2𝑞 + 1)𝛥𝑦 . (28)
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Fig. 2. Examples of (a) uniform mesh and (b) non-uniform mesh with half-way bounce-back scheme. Here, l.u. denotes the lattice length-unit [44]. The first fluid
node lies 0.5 l.u. from the wall due to the half-way bounce-back/anti-bounce-back scheme. (For interpretation of the references to color in this figure legend, the
eader is referred to the web version of this article.)
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where 𝑞 = 𝛥𝑦∗2∕𝛥𝑦
∗
1 > 1 is the ratio of the second to the first mesh

pacing, with 𝛥𝑦∗2 = 𝑦∗2 − 𝑦∗1 and 𝛥𝑦∗1 = 𝑦∗1 − 𝑦∗0.
The third issue is the calculation of spatial averages of flow vari-

ables. Based on the midpoint rule, the weighted average of a variable
on a non-uniform mesh is computed as

⟨𝜙𝑗⟩ =
𝑁𝑦
∑

𝑗=1
𝜙𝑗 ⋅

𝑦∗𝑗+1 − 𝑦∗𝑗−1
2

(29)

This formulation ensures that the contribution of each data point to the
overall average reflects its relative spatial extent within the domain.
However, caution must be exercised when interpreting the results. As
llustrated in Fig. 2(b), the vertical extent of the flow domain does not
pan the full unit length, since the solid walls are located at 𝑦∗𝑏𝑜𝑡𝑡𝑜𝑚 =
.5𝑦∗1 and 𝑦∗𝑡𝑜𝑝 = 1 − 0.5𝑦∗1, due to the half-way bounce-back scheme.
onsequently, the average along the vertical flow direction should be
ormalized by the effective cell height 1 − 𝑦∗1.

3. Laminar convection in a 2-D side-heated cavity

We first consider thermal convection in the canonical 2-D side-
eated cavity [46]. The vertical walls are maintained at constant hot

and cold temperatures, respectively, while the horizontal walls are
adiabatic. All four walls enforce no-slip velocity boundary conditions.
Although no exact analytical solution exists, this configuration has long
served as a benchmark for coupled fluid flow and heat transfer, ever
since Davis [46] reported comprehensive results on the flow struc-
ures and heat transport. A wide variety of solvers and datasets have
een provided for convection at 𝑅𝑎 ≤ 106. However, relatively fewer
enchmark datasets are available at 𝑅𝑎 ≥ 107, since simulating ther-
al flows at higher Rayleigh number requires more robust numerical
ethods and greater computational resources. At high 𝑅𝑎, the thermal

and velocity boundary layers become extremely thin, demanding high
near-wall resolution. This is precisely where non-uniform meshes can
deliver substantial computational savings without compromising ac-
curacy, making the side-heated cavity a natural testbed for assessing
both the accuracy and efficiency of ISLBM. Previously, we provided
benchmark-quality results using a fine mesh of 20492 uniform mesh
points [8], which were subsequently verified by Sun and Tao [47],
Chen et al. [48], Vesper et al. [49], and many others [50–58]. Here, to
validate the ISLBM for simulating coupled fluid flow and heat transfer,
we present results for 106 ≤ 𝑅𝑎 ≤ 108 with the Prandtl number fixed
at 𝑃 𝑟 = 0.71. At these Rayleigh numbers, the flow remains steady and
aminar in two dimensions, but the boundary layers become extremely
hin, posing significant challenges for numerical resolution. Under these
 e

5 
conditions, the flow is considered to have reached a steady state when
the following convergence criteria are satisfied:
∑

𝑖 ‖𝐮(𝑥𝑖, 𝑡 + 2000𝛿𝑡) − 𝐮(𝑥𝑖, 𝑡)‖2
∑

𝑖 ‖𝐮(𝑥𝑖, 𝑡)‖2
< 10−9,

∑

𝑖 |𝑇 (𝑥𝑖, 𝑡 + 2000𝛿𝑡) − 𝑇 (𝑥𝑖, 𝑡)|
∑

𝑖 |𝑇 (𝑥𝑖, 𝑡)|
< 10−9

(30)

where ‖𝐮‖2 denotes 𝐿2 norm of the velocity field 𝐮.
In LBM simulations, a reference velocity must be specified to fully

etermine the relaxation parameters, owing to the weakly compressible
ature of the method. For convection problems, we adopt the free-fall
elocity 𝑢𝑓 =

√

𝛽 𝑔 𝐻 𝛥𝑇 as the characteristic velocity, which yields the
imensionless Mach number 𝑀 𝑎 = 𝑢𝑓∕𝑐𝑠 =

√

𝛽 𝑔 𝐻 𝛥𝑇 ∕𝑐𝑠. Here, 𝑐𝑠 =
1∕

√

3 l.u./t.s. is the lattice speed of sound. Unless otherwise stated, we
set 𝑀 𝑎 = 0.1 in all simulations. To approximate incompressibility, the

ach number should be kept as small as possible. In LBM simulations,
owever, the ratio of the dimensionless time step to the dimensionless
patial resolution is given by 𝑑 𝑡∕𝑑 𝑥 = (𝛿𝑡∕

√

𝐻∕(𝛽 𝑔 𝛥𝑇 ))∕(𝛿𝑥∕𝐻) =
√

𝛽 𝑔 𝐻 𝛥𝑇 = 𝑀 𝑎 ⋅ 𝑐𝑠, with 𝛿𝑥 = 1 l.u. and 𝛿𝑡 = 1 t.s. Thus, re-
ucing the Mach number decreases the dimensionless time step for a
ixed mesh resolution, which in turn reduces computational efficiency

in time marching. Therefore, our choice of 𝑀 𝑎 = 0.1 represents a
compromise between approximating incompressibility and maintaining
computational efficiency.

In Fig. 3, we present the temperature and velocity fields. At 𝑅𝑎 =
106 (see Fig. 3a), the temperature distribution exhibits relatively thick
thermal boundary layers along the hot (left) and cold (right) walls, with
smooth stratification in the interior. As 𝑅𝑎 increases to 107 and 108

(see Figs. 3b and 3c), these boundary layers become thinner, reflecting
enhanced thermal gradients and stronger convective transport. The ve-
ocity fields reveal a single dominant clockwise large-scale circulation

cell in all cases (see Figs. 3d–f), with elevated velocity magnitudes
near the boundary layers. At higher 𝑅𝑎, the maximum velocities are
concentrated in narrow shear layers adjacent to the sidewalls, while
the streamlines indicate intensified plume activity near the vertical
boundaries. The core region remains relatively quiescent and horizon-
tally stratified. Overall, the flow structure agrees well with earlier 2-D
simulations (see Fig. 10 in our previous work [8] and with many other
tudies [47–49]).

Figs. 4(a) and 4(b) show the horizontal distributions of the tempera-
ure 𝑇 ∗ and vertical velocity 𝑣∗, each averaged over the mid-plane band
0.4 ≤ 𝑦 ≤ 0.6 for three Rayleigh numbers. This averaging minimizes
nd-wall effects and yields smooth profiles suitable for boundary-layer
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Fig. 3. Contours of (a–c) temperature field 𝑇 ∗ and (d–f ) velocity magnitude
√

𝑢∗2 + 𝑣∗2 (superposed with streamlines), at (a, d) 𝑅𝑎 = 106, (b, e) 𝑅𝑎 = 107, and
(c, f ) 𝑅𝑎 = 108.
analysis. Pronounced gradients are observed near the sidewalls, re-
flecting the development of thermal and momentum boundary layers
adjacent to the hot and cold boundaries. To examine these boundary
layers in more detail, Figs. 4(c) and 4(d) present enlarged views near
the hot wall (𝑥∗ = 0). The boundary-layer thicknesses are determined
using two widely adopted approaches: the 99% criterion method and
the slope method. In the 99% criterion method, the thermal boundary
layer thickness 𝛿𝑇 is defined as the distance from the wall where 𝑇 ∗

attains 99% of the difference between the wall and the core value, while
the velocity boundary layer thickness 𝛿𝑉 is defined as the distance
where 𝑣∗ reaches 99% of its maximum magnitude. In the slope method,
𝛿𝑇 is obtained as the ratio of the core-to-wall temperature difference to
the near-wall temperature gradient, and 𝛿𝑉 as the ratio of the maximum
velocity to the near-wall velocity gradient. Power-law fits show that
both methods yield consistent results, with 𝛿𝑇 ∼ 𝑅𝑎−0.25 and 𝛿𝑉 ∼
𝑅𝑎−0.25 at 𝑃 𝑟 = 0.71. These results confirm that the thermal and velocity
boundary layers exhibit comparable scaling with Rayleigh number.

In Table 2, we present quantitative results for heat transfer effi-
ciency in terms of the Nusselt number, and for global flow strength
in terms of the Reynolds number. Specifically, the volume-averaged
Nusselt number ⟨𝑁 𝑢⟩ is defined as

⟨𝑁 𝑢⟩ =
√

𝑅𝑎𝑃 𝑟⟨𝑢∗𝑇 ∗
⟩𝑉 + 1 (31)

the average Nusselt number along the hot wall 𝑁 𝑢hot is given by

𝑁 𝑢hot = −⟨ 𝜕 𝑇
∗

𝜕 𝑥∗ ⟩𝑥∗=0 (32)

and the average Nusselt number along the vertical centerline 𝑁 𝑢middle
is expressed as

𝑁 𝑢middle = ⟨

√

𝑅𝑎𝑃 𝑟𝑢∗𝑇 ∗ − 𝜕 𝑇 ∗

𝜕 𝑥∗ ⟩𝑥∗=0.5 (33)

The volume-averaged Reynolds number ⟨𝑅𝑒⟩ is defined as

⟨𝑅𝑒⟩ =
√

𝑅𝑎
𝑃 𝑟 ⟨

√

𝑢∗2 + 𝑣∗2⟩𝑉 (34)

Here, ⟨⋅⟩𝑉 denotes a volume average, ⟨⋅⟩𝑥∗=0 a line average along the
hot wall, and ⟨⋅⟩𝑥∗=0.5 a line average along the vertical centerline.
For comparison, we also include benchmark data from previous stud-
ies: Wang et al. [59], who employed a finite-difference method to
6 
Table 2
Benchmark solutions of the Nusselt numbers and Reynolds number. Columns
from left to right indicate: Rayleigh number 𝑅𝑎; flow database; grid number
𝑁𝑥 × 𝑁𝑦; volume-averaged Nusselt number ⟨𝑁 𝑢⟩; average Nusselt number
along the hot wall 𝑁 𝑢hot; average Nusselt number along the vertical centerline
𝑁 𝑢middle ; volume-averaged Reynolds number ⟨𝑅𝑒⟩.
𝑅𝑎 Flow database 𝑁𝑥 ×𝑁𝑦 ⟨𝑁 𝑢⟩ 𝑁 𝑢hot 𝑁 𝑢middle ⟨𝑅𝑒⟩

106

Present 2572 8.8282 8.8509 8.8277 99.6110
Present 5132 8.8202 8.8317 8.8200 99.3839
Present 10252 8.8188 8.8246 8.8188 99.3576
∞ – 8.8186 8.8206 8.8186 99.3542
𝑝 – 2.6 1.5 2.6 3.1
GCI (%) – 0.0037 0.058 0.0033 0.0043
Wang [59] 1282 8.830 – – 99.11
Le Quéré [60] 722 – 8.825 8.825 –
Contrino [39] 20432 8.8252 8.8252 8.8252 –

107

Present 5132 16.5245 16.5461 16.5243 230.6601
Present 10252 16.5133 16.5242 16.5133 230.2448
Present 20492 16.5114 16.5169 16.5114 230.1948
∞ – 16.5110 16.5132 16.5110 230.1879
𝑝 – 2.5 1.6 2.6 3.1
GCI (%) – 0.0030 0.028 0.0029 0.0037
Xu [8] 20492 16.52414 16.52229 16.52428 –
Wang [59] 2562 16.528 – – 229.70
Le Quéré [60] 802 – 16.523 16.523 –
Contrino [39] 20432 16.5231 16.5233 16.5232 –

108

Present 5132 30.3130 30.3503 30.3125 542.9352
Present 10252 30.2225 30.2423 30.2223 537.3420
Present 20492 30.2072 30.2172 30.2072 536.6449
∞ – 30.2041 30.2096 30.2041 536.5456
𝑝 – 2.6 2.1 2.6 3.0
GCI (%) – 0.013 0.031 0.013 0.023
Xu [8] 20492 30.23013 30.22650 30.23050 –
Wang [59] 2562 30.242 – – 534.23
Le Quéré [60] 1282 – 30.225 30.225 –
Contrino [39] 20432 30.2255 30.2268 30.2261 –

solve low-Mach-number equations; Le Quéré [60], who used a pseudo-
spectral Chebyshev algorithm; Contrino et al. [39], who applied an
MRT-LBM with a forcing term split using the Strang–Marchuk scheme;
and our previous work [8], which used the LBM with Guo’s forcing
scheme [42,43,61] on a uniform mesh.
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Fig. 4. Horizontal distributions of vertically averaged (a) temperature 𝑇 ∗ and (b) vertical velocity 𝑣∗. Panels (c, d) show enlarged views near the hot wall (𝑥∗ = 0),
where open circles denote boundary layer locations determined by the 99% criterion method and open squares denote those determined by the slope method.
Fig. 5. (a–c) Contours of the logarithm of velocity divergence magnitude, log10(|∇ ⋅ 𝐮|). (d–f ) Probability density functions (PDFs) of log10(|∇ ⋅ 𝐮|), obtained over
the entire cell, at (a, d) 𝑅𝑎 = 106, (b, e) 𝑅𝑎 = 107 and (c, f ) 𝑅𝑎 = 108.
The comparison in Table 2 shows that the present data converge to-
ward the asymptotic value (discussed later) and are in good agreement
with previous studies. An interesting observation is that the present
Nusselt numbers are slightly lower than those reported in our earlier
work [8], with deviations of less than 0.1%. We attribute this small
discrepancy to the weak compressibility of the current LB model. In
our previous work [8], only density fluctuation 𝛿 𝜌 were included in
certain components of the equilibrium moments 𝐦(eq) (see Eq. (3)
in [8]), which provided a good approximation for incompressible flows
7 
in steady state. In the present study, however, we incorporate the
full density 𝜌 in the equilibrium moments 𝐦(eq), resulting in a weakly
compressible formulation that enhances numerical stability. As also re-
ported by Wang et al. [59] and Wen et al. [62,63], weak compressibility
leads to a slight decrease in 𝑁 𝑢 and a slight increase in 𝑅𝑒, without
significantly affecting the scaling exponents with respect to 𝑅𝑎.

To assess the compressibility effects intrinsic to the LBM employed
in this study, we examine both the spatial distribution and statistical
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properties of the velocity divergence field. Although the LBM formu-
lation is nearly incompressible, the simulations operate in a weakly
compressible regime with a Mach number of 𝑀 𝑎 = 0.1, necessitating
a careful evaluation of divergence behavior. Figs. 5(a–c) show contour
maps of the base-10 logarithm of the velocity divergence magnitude,
log10(|∇ ⋅ 𝐮|), computed over the entire domain. In all cases, the di-
vergence field remains predominantly low, with most of the domain
xhibiting values below 10−4, consistent with the nearly incompressible
haracter of the formulation. At 𝑅𝑎 = 106 (see Fig. 5a), the divergence
ield is characterized by smoother structures, reflecting weak localized

deviations from incompressibility. As 𝑅𝑎 increases to 107 (see Fig. 5b),
iner features emerge, with localized regions of elevated divergence
agnitude appearing intermittently throughout the domain. At the

highest Rayleigh number considered, 𝑅𝑎 = 108 (see Fig. 5c), the
divergence field develops elongated and filamentary structures aligned
with regions of intensified thermal plumes and sharp velocity gradi-
nts. Although local compressibility effects are slightly amplified at
igher Rayleigh numbers, they remain small in magnitude and spatially
onfined. This ensures that the weakly compressible LBM faithfully
eproduces the incompressible flow characteristics.

To quantitatively assess the divergence statistics, Figs. 5(d–f) show
the probability density functions (PDFs) of log10(|∇ ⋅ 𝐮|), evaluated at
three spatial resolutions for each Rayleigh numbers. In all cases, the
PDFs peak within |∇ ⋅ 𝐮| ∈ [10−7, 10−3], with long tails extending
down to 10−11, again consistent with a nearly incompressible flow
ield. As resolution increases, the PDFs converge, particularly near the

most probable values. In addition, a modest increase in the domain-
averaged divergence is observed when 𝑅𝑎 increases from 106 to 108.
This trend is physically reasonable, as stronger thermal forcing steepens
velocity and temperature gradients, thereby amplifying local compress-
ibility effects in weakly compressible formulations. Similar divergence
characteristics have also been reported in high-fidelity incompressible
simulations. For example, Ostilla-Mónico et al. [64] observed locally
on-solenoidal fields with residual divergence of order of 𝑂(10−3) in
ultiple-resolution incompressible Navier–Stokes simulations. To the

est of our knowledge, such low levels of divergence do not introduce
ignificant qualitative or quantitative deviations, even in turbulent
onvection regimes.

Our non-uniform mesh is systematically refined to preserve ge-
ometric similarity while halving the effective mesh spacing at each
refinement level. To assess convergence, we employ Richardson ex-
trapolation using three successively refined meshes. For 𝑅𝑎 = 106, the
grid resolutions are (𝑁coarse, 𝑁medium, 𝑁fine) = (257, 513, 1025), and for
𝑅𝑎 = 107 and 108, they are (𝑁coarse, 𝑁medium, 𝑁fine) = (513, 1025, 2049).
Throughout, the effective mesh spacing follows 𝛥𝑥𝑖 ∝ 1∕𝑁𝑖, with
refinement ratio 𝑟 = 𝛥𝑥coarse∕𝛥𝑥medium = 𝛥𝑥medium∕𝛥𝑥fine = 2. Let  (𝛥𝑥)
denote a flow quantity computed on mesh spacing 𝛥𝑥. The observed
order of convergence 𝑝 is then estimated as

𝑝 =
ln
(

|

|

|

|

 (𝛥𝑥coarse)− (𝛥𝑥medium)
 (𝛥𝑥medium)− (𝛥𝑥fine)

|

|

|

|

)

ln(𝑟)
(35)

The corresponding asymptotic, grid-independent value is obtained as

 (1∕∞) ≈ 𝑟𝑝 (𝛥𝑥fine) −  (𝛥𝑥medium)
𝑟𝑝 − 1 (36)

Table 2 reports the estimated convergence orders and extrapolated
asymptotic values of the Nusselt and Reynolds numbers. Although the
table lists four significant digits for readability, all computations were
erformed with at least fourteen-digit precision. The interpolation-
upplemented LBM solver achieves nearly third-order spatial accuracy
n domain-integrated quantities, such as volume-averaged Nusselt and
eynolds numbers. This enhanced accuracy arises because the integra-

ion process inherently damps local discretization errors. To further
xamine this hypothesis, Table 3 reports convergence orders for local

flow variables evaluated at the cell center. The vorticity field, being
a derivative of velocity, exhibits close to third-order accuracy, while
 e

8 
Table 3
Convergence behavior of flow variables at cell center. The columns from
left to right indicate the following: Rayleigh number 𝑅𝑎; absolute value
of vorticity |𝜔𝑐 |; temperature 𝑇𝑐 , horizontal velocity component 𝑢𝑐 ; vertical
velocity component 𝑣𝑐 .
𝑅𝑎 Grid |𝜔𝑐 | 𝑇𝑐 𝑢𝑐 𝑣𝑐

106

2572 0.1175 0.49945 −1.2163×10−4 1.8504×10−5
5132 0.1158 0.49947 −1.3013×10−4 1.9377×10−5
10252 0.1156 0.49948 −1.3239×10−4 1.9551×10−5
∞ 0.1155 0.49948 −1.3320×10−4 1.9594×10−5
𝑝 2.6 2.0 1.9 2.3
GCI (%) 0.054 0.00055 0.77 0.27

107

5132 0.1088 0.49930 −8.0524×10−5 8.2430×10−6
10252 0.1076 0.49934 −8.3466×10−5 8.3163×10−6
20492 0.1075 0.49934 −8.4272×10−5 8.3330×10−6
∞ 0.1074 0.49935 −8.4576×10−5 8.3379×10−6
𝑝 2.7 2.0 1.9 2.1
GCI (%) 0.037 0.00068 0.45 0.073

108

5132 4.1046×10−2 0.49911 −3.7830×10−5 3.1377×10−6
10252 3.9075×10−2 0.49922 −4.2857×10−5 2.7224×10−6
20492 3.8864×10−2 0.49925 −4.4429×10−5 2.6433×10−6
∞ 3.8838×10−2 0.49926 −4.5144×10−5 2.6248×10−6
𝑝 3.2 2.0 1.7 2.4
GCI (%) 0.082 0.0024 2.0 0.88

local temperature and velocity converge at approximately second-order
accuracy.

In addition to assessing the observed order of convergence and
extrapolated asymptotic values, we further quantified the discretization
uncertainty using the Grid Convergence Index (GCI), following the

SME procedure [65]. For three systematically refined meshes with a
refinement ratio of 𝑟, the GCI on the fine mesh is computed as

GCIfine =
𝐹𝑠

𝑟𝑝 − 1
|

|

|

|

 (𝛥𝑥fine) −  (𝛥𝑥medium)
 (𝛥𝑥fine)

|

|

|

|

× 100%, (37)

where 𝑝 is the observed convergence order and 𝐹𝑠 = 1.25 is the safety
factor recommended for three-grid studies. The resulting GCI values
are typically below 0.1% for global quantities such as the Nusselt and
Reynolds numbers (see Table 2), whereas local velocity components ex-
hibit somewhat larger values, up to ∼ 2% (see Table 3), reflecting their
igher sensitivity to grid resolution. These results demonstrate that the
ine-mesh solutions lie within the asymptotic range of convergence and

that the numerical uncertainty in the reported quantities is negligible.
We evaluate the computational efficiency of our in-house LBM

olver by comparing it against two widely used open-source solvers:
Nek5000 (version v19.0), which is based on the spectral element
method (SEM) [66], and OpenFOAM (version 8), which employs the
inite volume method (FVM) [67].

The Nek5000 solver extends the standard finite element method to
igher-order polynomial basis functions [66]. In this study, the poly-

nomial order for both velocity and pressure is set to 𝑁 = 8, following
the Pn–Pn formulation. This choice is consistent with values commonly
dopted in high-fidelity turbulent flow simulations. The Pn–Pn for-
ulation employs a time-splitting scheme that decouples the pressure

nd velocity fields into three distinct substeps. The pressure Poisson
quation is solved using the preconditioned Generalized Minimal Resid-
al (GMRES) method, while the Helmholtz equations for the velocity
omponents are solved using the preconditioned Conjugate Gradient
CG) method. For temporal discretization, a semi-implicit scheme is
mployed. The viscous term is discretized implicitly using a second-
rder backward difference scheme, while the nonlinear convection term
s discretized explicitly using a second-order extrapolation scheme.
he energy equation, governing temperature via a convection–diffusion
ormulation, is handled analogously: the transient and diffusion terms
re treated implicitly with a second-order backward difference scheme,
hile the convection term is treated explicitly using a second-order
xtrapolation scheme.



A. Xu et al.

t
t

c
w

s

u
i

m
t
a
r
o
c
I
o
s
e

s
u
o
i
o
a
g
e
i
r
f
m
i
C

o
s
I
t
d
r
t
s
i

m
o
O
W
F
s
e
n
w
w
t
t
L
O
p
t
r
w
M
i
t
a

s
c

t

s
c
p
o
t
s
C
g
c
g
a
t

International Journal of Heat and Mass Transfer 255 (2026) 127790 
The OpenFOAM solver enforces the integral form of the conserva-
ion equations on each control volume. In this study, we employed the
ransient buoyantPimpleFoam solver [67]. The Navier–Stokes equations

were solved using the PIMPLE pressure–velocity coupling algorithm.
Within the inner iterations, the Semi-Implicit Method for Pressure-
Linked Equations (SIMPLE) scheme was applied for pressure correction,
while the outer iterations used the Pressure Implicit with Splitting of
Operators (PISO) scheme to handle transient terms, thereby improv-
ing convergence and numerical stability. For temporal discretization,
a second-order implicit backward scheme was adopted. Spatial dis-
retization was carried out within the Gauss linear framework, in
hich volume integrals are evaluated by Gaussian quadrature and face

fluxes are approximated using linear interpolation. The pressure equa-
tion in the resulting linear systems was solved using the Geometric–
Algebraic Multi-Grid (GAMG) method to accelerate convergence for
large-scale problems. The velocity and energy equations were solved
using the Preconditioned Bi-Conjugate Gradient Stabilized (PBiCGStab)
method, which efficiently handles non-symmetric sparse matrices while
maintaining both stability and accuracy.

As a performance metric, we adopt the million lattice updates per
econd (MLUPS), defined as:

MLUPS = grid size × iteration steps
running time × 106 (38)

A higher MLUPS value indicates greater computational efficiency. The
se of simple geometry and boundary conditions in the side-heated cav-
ty enables direct and fair comparisons with Nek5000 and OpenFOAM,

while minimizing discrepancies related to solver-specific geometrical
handling or mesh preprocessing. This ensures that the reported perfor-

ance metrics primarily reflect the core algorithmic efficiency, rather
han differences in geometry setup. Figs. 6(a) and 6(b) show MLUPS
s a function of grid number on uniform and non-uniform meshes,
espectively. The simulations were carried at 𝑅𝑎 = 108 and 𝑃 𝑟 = 0.71,
n AMD EPYC 9135 CPUs. For non-uniform meshes, the stretching
oefficient in the error-function (i.e. Eq. (26)) was set to 𝑎 = 2.1.
ncreasing the grid resolution from 10242 to 81922 has minimal impact
n the performance of the in-house LBM solver. In contrast, Nek5000
hows a slight decline, while OpenFOAM exhibits a significant drop in
fficiency. To further emphasize the relative differences, Figs. 6(c) and

6(d) present MLUPS values normalized by those of the in-house LBM
olver at each grid size. The results clearly show that Nek5000 becomes
p to two orders of magnitude slower than LBM at the largest grid size
f 81922. For OpenFOAM, the disparity is even more pronounced, reach-
ng up to three orders of magnitude slower at the same resolution. The
bserved performance advantage of the LBM stems from its reliance
lmost entirely on local operations (collision and streaming) with no
lobal matrix solves or complex stencil dependencies. This design yields
xcellent memory locality and computational regularity, allowing near-
deal scaling across CPU cores until memory-bandwidth limits are
eached. In contrast, SEM and FVM require global or semi-global solves
or the pressure field and other coupled variables, involving sparse
atrix–vector products, iterative solvers, and halo exchanges. These

ntroduce higher communication costs and memory-access irregularity.
onsequently, the orders-of-magnitude speedup of LBM becomes most

pronounced at large grid sizes, where communication overhead and
global-solve cost dominate in SEM/FVM frameworks.

For steady problems, different solvers may require varying numbers
f time steps to converge, depending on the temporal discretization
cheme employed and the inherent numerical damping of each solver.
n unsteady simulations, however, it is often necessary to quantify
he computational cost of advancing the solution over a prescribed
imensionless physical time (e.g., 1, 10, or 100 free-fall time). This
equirement is particularly relevant in large-scale turbulent convec-
ion studies, where long integrations are needed to achieve statistical
tationarity and to accumulate converged averages. To this end, we
ntroduce the metric WCTpDT (Wall-Clock Time per Dimensionless
9 
Time), defined as:

WCTpDT = measured wall-clock time
simulated dimensionless time [s] (39)

which quantifies the wall-clock time required to simulate one unit of
dimensionless time on a given solver and hardware configuration. A
lower WCTpDT indicates greater efficiency, as fewer computational
resources are required to advance the solution over one unit of di-

ensionless time. Figs. 7(a) and 7(b) show WCTpDT as a function
f grid number for uniform and non-uniform meshes, respectively.
n uniform meshes, the LBM solver consistently achieves the lowest
CTpDT across all tested resolutions. For non-uniform meshes, Open-

OAM shows a modest advantage at the coarsest resolution, but as grid
ize increases, the LBM solver demonstrates superior time-advancement
fficiency. This advantage becomes even clearer when WCTpDT is
ormalized by the LBM results, as shown in Figs. 7(c) and 7(d). It is
orth noting that the Courant–Friedrichs–Lewy (CFL) numbers adopted
ere 0.5 for Nek5000 and 0.9 for OpenFOAM, allowing these solvers

o employ relatively larger time steps than LBM. On the uniform mesh,
he effective nondimensional timestep is 𝑑 𝑡∕𝑑 𝑥 = 𝑀 𝑎 ⋅ 𝑐𝑠 ≈ 0.0577 for
BM, compared with 𝑑 𝑡∕𝑑 𝑥 ≈ 0.8 for Nek5000 and 𝑑 𝑡∕𝑑 𝑥 ≈ 1.2 for
penFOAM. While larger timesteps should, in principle, reduce the cost
er simulated physical time, Nek5000 and OpenFOAM exhibit substan-
ially higher per-step overhead. As a result, their WCTpDT values are
oughly an order of magnitude larger than those of LBM. This explains
hy, despite LBM attaining two to three orders of magnitude higher
LUPS values than Nek5000 and OpenFOAM, the relative advantage

n WCTpDT is smaller. Nevertheless, as the grid resolution increases,
he efficiency gap widens and the LBM solver becomes increasingly
dvantageous.

To further assess the computational efficiency of the in-house LBM
olver on modern GPU architectures, additional performance tests were
onducted on an NVIDIA A100 GPU. Fig. 8 compares the solver’s

performance on uniform and non-uniform meshes in terms of MLUPS
and WCTpDT across different grid sizes. As shown in Fig. 8(a), on
all tested grids, MLUPS values on uniform meshes consistently exceed
those on non-uniform meshes. This disparity stems primarily from the
additional interpolation operations required for off-lattice streaming on
non-uniform grids, which introduce irregular memory access patterns
and reduce throughput. The normalized MLUPS (see Fig. 8b) shows
hat non-uniform grids achieve only 60%–70% of the performance of

uniform grids, depending on resolution. The quadratic interpolation
step, particularly its memory-bound indirect access pattern, is the main
ource of this performance degradation. Uniform meshes permit fully
oalesced and predictable memory access, whereas non-uniform inter-
olation requires fetching data from spatially non-contiguous mem-
ry locations, leading to irregular global memory access and reduced
hroughput. The collision step, in contrast, is compute-bound and con-
istently sustains high arithmetic throughput regardless of mesh type.
onsequently, the observed 30%–40% drop in MLUPS for non-uniform
rids reflects interpolation overhead rather than any intrinsic ineffi-
iency of the LBM algorithm. WCTpDT increases nearly linearly with
rid size for both mesh types (see Fig. 8c), while the relative overhead
ssociated with non-uniform meshes remains stable at about a factor of
hree across resolutions (see Fig. 8d). These results confirm that, despite

modest penalties from interpolation overhead, the in-house LBM solver
retains excellent scalability and GPU efficiency on both mesh types.
This enables practical large-scale simulations on contemporary accel-
erator hardware. It is also worth noting that our LBM solver on GPUs
employs double-precision floating point arithmetic to ensure accuracy.

We also assess the economic benefits of the LBM solver on GPU
platforms through a simple cost estimation. Consider a simulation at
𝑅𝑎 = 108 and 𝑃 𝑟 = 0.71 using a 81932 non-uniform mesh with a stretch-
ing coefficient of 𝑎 = 2.1. On an NVIDIA A100 GPU, the wall-clock time
required to advance the simulation by 1 𝑡 (i.e. WCTpDT) is 1.5722 ×
𝑓
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Fig. 6. Performance comparison of three solvers in terms of million lattice updates per second (MLUPS): an in-house solver using the lattice Boltzmann method
(LBM), Nek5000 using the spectral element method (SEM), and OpenFOAM using the finite volume method (FVM). (a, b) Absolute MLUPS as a function of grid
number; (c, d) MLUPS normalized by the corresponding LBM values, on (a, c) uniform and (b, d) non-uniform meshes.
Fig. 7. Performance comparison of in-house LBM solver, Nek5000 and OpenFOAM in terms of wall-clock time per dimensionless time (WCTpDT). (a, b) Absolute
CTpDT as a function of grid number; (c, d) WCTpDT normalized by the corresponding LBM values, on (a, c) uniform and (b, d) non-uniform meshes.
104 s ≈ 4.37 h. Assuming a nominal rental cost of 7 RMB per GPU-
hour, the corresponding cost per 𝑡𝑓 is 4.37 h × 7 RMB/h ≈ 30.57 RMB.
By contrast, CPU-based solvers requires significantly longer wall-clock
times. For Nek5000, the time per 𝑡𝑓 is about 2.871852 × 106 s ≈ 797.74 h,
10 
yielding a cost of 797.74 h× 0.1 RMB/h ≈ 79.77 RMB, where we assume
a conservative rate of 0.1 RMB per CPU-core hour. For OpenFOAM,
the required time increases to 1.0981646 × 107 s ≈ 3050.5 h, yielding
3050.5 h × 0.1 RMB/h ≈ 305.05 RMB. It is important to emphasize
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Fig. 8. GPU performance of the in-house LBM solver on an NVIDIA A100 for uniform and non-uniform meshes. (a) Absolute MLUPS as a function of grid number,
b) MLUPS normalized by the corresponding uniform-mesh performance. (c) Absolute WCTpDT as a function of grid number, (d) WCTpDT normalized by the
orresponding uniform-mesh value.
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that both Nek5000 and OpenFOAM typically run on multi-core CPU
architectures, where scalability is often limited by communication over-
head and memory contention. Consequently, the effective performance
falls short of ideal expectations, further increasing wall-clock times and
verall computational cost. These considerations highlight the substan-
ial economic advantage of the GPU-based LBM solver, an advantage
hat becomes increasingly pronounced in large-scale simulations.

4. Laminar thermal convection in a 3-D side-heated cavity

We next consider thermal convection in the canonical 3-D side-
eated cavity [37]. The left and right vertical walls are maintained
t constant hot and cold temperatures, respectively, while the other

four walls are adiabatic. All six walls impose no-slip velocity boundary
conditions. In our previous work [37], we provided results obtained on
 uniform mesh of 2573 grid points, which were subsequently verified
y Sun and Tao [47], Chen et al. [48], Ren et al. [68,69], Yigit

et al. [70], Vesper et al. [49], and many others [55,56,71–73]. Here, to
alidate the ISLBM for simulating coupled fluid flow and heat transfer
n 3-D, we present simulation results for 105 ≤ 𝑅𝑎 ≤ 107, with the

Prandtl number fixed at 0.71. Under these conditions, the flow reaches
a steady state once the same convergence criteria as in the 2-D case are
atisfied (see Eq. (30)).

Fig. 9 illustrates the temperature fields 𝑇 ∗, where contour slices in
the vertical planes highlight the evolution of thermal structures with
increasing buoyancy forcing. At 𝑅𝑎 = 105 (see Fig. 9a), the flow is
characterized by relatively smooth and broad thermal gradients with
hick boundary layers. As 𝑅𝑎 increases to 106 (see Fig. 9b), convection
ecomes more vigorous, leading to thinner boundary layers and sharper
ertical temperature gradients, indicative of enhanced plume activity.
t 𝑅𝑎 = 107 (see Fig. 9c), convective transport dominates: the temper-

ature field exhibits well-defined plume structures, pronounced vertical
mixing, and significantly thinner boundary layers. These visualizations
demonstrate the progressive transition from conduction-dominated to
convection-dominated regimes as 𝑅𝑎 increases. The overall structure
11 
agrees well with earlier 3-D simulations (see Fig. 10 in our previous
work [37] and with many other studies [47,48]).

Figs. 10(a) and 10(b) show the horizontal distributions of the tem-
perature 𝑇 ∗ and vertical velocity 𝑣∗, each averaged over the mid-plane
and 0.4 ≤ 𝑦 ≤ 0.6 for three Rayleigh numbers. Both quantities
xhibit clear gradients near the sidewalls, indicating the formation
f thermal and momentum boundary layers. Enlarged views near the
ot wall (𝑥∗ = 0) are provided in Figs. 10(c) and 10(d), where open

circles and squares denote the boundary layer thicknesses determined
using the 99% criterion and slope methods, respectively. From these

easurements, the scaling relations are obtained as 𝛿𝑇 ∼ 𝑅𝑎−0.26 for
he thermal boundary layer and 𝛿𝑉 ∼ 𝑅𝑎−0.23 for the velocity boundary
ayer, with consistent results from both methods.

In Table 4, we present quantitative results for heat transfer effi-
iency in terms of the Nusselt number, and for global flow strength
n terms of the Reynolds number. Specifically, the volume-averaged
usselt number ⟨𝑁 𝑢⟩ is defined as

⟨𝑁 𝑢⟩ =
√

𝑅𝑎𝑃 𝑟⟨𝑢∗𝑇 ∗
⟩𝑉 + 1 (40)

and the average Nusselt numbers along the hot and cold walls, 𝑁 𝑢hot
and 𝑁 𝑢cold, are given by

𝑁 𝑢hot = −⟨ 𝜕 𝑇
∗

𝜕 𝑥∗ ⟩hot, 𝑁 𝑢cold = −⟨ 𝜕 𝑇
∗

𝜕 𝑥∗ ⟩cold (41)

The volume-averaged Reynolds number ⟨𝑅𝑒⟩ is defined as

⟨𝑅𝑒⟩ =
√

𝑅𝑎
𝑃 𝑟 ⟨

√

𝑢∗2 + 𝑣∗2⟩𝑉 (42)

Here, ⟨⋅⟩𝑉 denotes a volume average, while ⟨⋅⟩hot/cold denotes an area
verage along the hot or cold wall. For comparison, we also include
ata from previous studies, such as Fusegi et al. [74], who employed

a control-volume-based finite difference method with a strongly im-
plicit scheme; Tric et al. [75], who used a pseudo-spectral Chebyshev
algorithm based on the projection–diffusion method; and our earlier

ork [37], which employed the LBM with Guo’s forcing scheme [42,
43,61] on a uniform mesh.
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Fig. 9. Temperature slices 𝑇 ∗ at (a) 𝑅𝑎 = 105, (b) 𝑅𝑎 = 106, and (c) 𝑅𝑎 = 107.
Fig. 10. Horizontal distributions of vertically averaged (a) temperature 𝑇 ∗ and (b) vertical velocity 𝑣∗. Panels (c, d) show enlarged views near the hot wall (𝑥∗ = 0),
where open circles denote boundary layer locations determined by the 99% criterion method, and open squares denote boundary layer locations determined by
the slope method.
Fig. 11. PDFs of log10(|∇ ⋅ 𝐮|) obtained over the entire domain, for (a) 𝑅𝑎 = 105, (b) 𝑅𝑎 = 106, and (c) 𝑅𝑎 = 107.
The results in Table 4 demonstrate good agreement with previous
studies, with most values converge toward the corresponding asymp-
totic limits. To ensure systematic refinement, the non-uniform mesh
12 
was constructed to preserve geometric similarity while reducing the
effective mesh spacing. Richardson extrapolation was then applied
using three successively refined meshes: for 𝑅𝑎 = 105, the grid numbers



A. Xu et al.

a

t
t
𝛥
o
a
m
u
d

t

l

r
a
s
c
i
e

a
3

u

p
O
a
c
l
w
t
t

International Journal of Heat and Mass Transfer 255 (2026) 127790 
Table 4
Benchmark solutions of the Nusselt numbers and Reynolds number. The
columns from left to right indicate the following: Rayleigh number 𝑅𝑎; flow
database; grid number 𝑁𝑥 ×𝑁𝑦 ×𝑁𝑧; volume-averaged Nusselt number ⟨𝑁 𝑢⟩;
average Nusselt number along the hot wall 𝑁 𝑢hot; average Nusselt number
long the cold wall 𝑁 𝑢cold; volume-averaged Reynolds number ⟨𝑅𝑒⟩.
𝑅𝑎 Flow database 𝑁𝑥 ×𝑁𝑦 ×𝑁𝑧 ⟨𝑁 𝑢⟩ 𝑁 𝑢hot 𝑁 𝑢cold ⟨𝑅𝑒⟩

105

Present 1293 4.3406 4.3624 4.3624 39.4521
Present 1813 4.3363 4.3520 4.3520 39.3768
Present 2573 4.3346 4.3457 4.3457 39.3500

∞ 4.3334 4.3362 4.3362 39.3352
𝑝 2.6 1.5 1.5 3.0
GCI (%) 0.03 0.3 0.3 0.05

Fusegi [74] 623 – 4.361 – –
Tric [75] 813 – – 4.3370 –

106

Present 1813 8.6601 8.6931 8.6931 97.4828
Present 2573 8.6441 8.6669 8.6668 97.0075
Present 3613 8.6379 8.6540 8.6540 96.8464

∞ 8.6341 8.6419 8.6419 96.7638
𝑝 2.8 2.1 2.1 3.1
GCI (%) 0.055 0.18 0.18 0.11

Xu [37] 2573 – 8.64345 8.64342 –
Fusegi [74] 623 – 8.770 – –
Tric [75] 813 – – 8.6407 –

107

Present 1813 16.5341 16.6161 16.6158 237.3925
Present 2573 16.4179 16.4681 16.4680 230.7625
Present 3613 16.3670 16.4001 16.4001 228.4148

∞ 16.3274 16.3422 16.3422 227.1278
𝑝 2.4 2.3 2.3 3.0
GCI (%) 0.30 0.44 0.44 0.70

Xu [37] 2573 – 16.40322 16.40285 –
Tric [75] 1113 – – 16.3427 –

are (𝑁coarse, 𝑁medium, 𝑁fine) = (129, 181, 361); for 𝑅𝑎 = 106 and 107,
hey are (𝑁coarse, 𝑁medium, 𝑁fine) = (181, 257, 361). Throughout, we
ake 𝛥𝑥𝑖 ∝ 1∕𝑁𝑖, with a refinement ratio 𝑟 = 𝛥𝑥coarse∕𝛥𝑥medium =
𝑥medium∕𝛥𝑥fine ≈ 1.41. Table 4 reports the estimated convergence
rders and Richardson-extrapolated asymptotic values of the Nusselt
nd Reynolds numbers. The included GCI values confirm that nu-
erical uncertainty is generally small, typically below 1%. Larger
ncertainties are observed for local variables, reflecting the greater
ifficulty of achieving convergence in these quantities. Nevertheless,

these results validate the robustness of the grid-refinement study. The
ISLBM solver achieves nearly third-order spatial accuracy for volume-
averaged Nusselt and Reynolds numbers, owing to the error-canceling
effect of domain integration. To further examine this behavior, Table 5
summarizes flow variables evaluated at the cell center. Consistent with
he 2-D case, these local flow variables converge at approximately

second order.

As in the 2-D case, compressibility effects are assessed by examining
the divergence field in three dimensions. Fig. 11 shows the PDFs of
og10(|∇ ⋅ 𝐮|) at 𝑅𝑎 = 105, 106, and 107, evaluated at three different
grid resolutions. Across all Rayleigh numbers, the PDFs peak between
|∇ ⋅ 𝐮| ∈ [10−6, 10−4] with long tails extending toward 10−11, indicating
that the flow remains nearly solenoidal. With increasing resolution,
the distributions collapse onto each other, demonstrating numerical
convergence of the divergence statistics. At higher Rayleigh numbers,
the PDFs broaden slightly and the mean divergence increases modestly,
eflecting stronger thermal forcing and sharper gradients that locally
mplify compressibility effects. Nevertheless, these deviations remain
mall in magnitude. Taken together with the 2-D results, these findings
onfirm that the weakly compressible LBM preserves the incompress-
ble character of thermal convection in both two and three dimensions,
ven at high Rayleigh numbers.

To extend the performance assessment to three dimensions, we
dopt MLUPS as the performance metric. Fig. 12 shows results for
-D simulations at 𝑅𝑎 = 107 and 𝑃 𝑟 = 0.71 on both uniform and
 p

13 
Table 5
Convergence behavior of flow variables at the cell center. The columns from
left to right indicate the following: Rayleigh number 𝑅𝑎; grid number 𝑁𝑥 ×
𝑁𝑦×𝑁𝑧; absolute value of vorticity magnitude |𝜔𝑐 |; temperature 𝑇𝑐 ; horizontal
velocity 𝑢𝑐 ; vertical velocity 𝑣𝑐 .
𝑅𝑎 Grid |𝜔𝑐 | 𝑇𝑐 𝑢𝑐 𝑣𝑐

105

1293 0.2565 0.49948 −2.1342 × 10−4 1.3056 × 10−4
1813 0.2560 0.49949 −2.2689 × 10−4 1.2423 × 10−4
2573 0.2557 0.49950 −2.3377 × 10−4 1.2119 × 10−4
∞ 0.2548 0.49950 −2.4093 × 10−4 1.1837 × 10−4
𝑝 0.9 2.0 2.0 2.1
GCI (%) 0.5 0.002 4.0 3.0

106

1813 0.1419 0.49942 −1.2268 × 10−4 1.4722 × 10−5
2573 0.1383 0.49946 −1.3361 × 10−4 1.6437 × 10−5
3613 0.1370 0.49948 −1.3933 × 10−4 1.7106 × 10−5
∞ 0.1363 0.49949 −1.4563 × 10−4 1.7532 × 10−5
𝑝 3.0 2.1 1.9 2.1
GCI (%) 0.63 0.0039 5.7 3.1

107

1813 0.1296 0.49898 −7.1568 × 10−5 6.1396 × 10−6
2573 0.1149 0.49917 −7.3572 × 10−5 7.4064 × 10−6
3613 0.1094 0.49926 −7.8387 × 10−5 7.7847 × 10−6
∞ 0.1060 0.49934 – 7.9458 × 10−6
𝑝 2.8 2.3 – 3.5
GCI (%) 3.9 0.019 – 2.6

non-uniform meshes executed on AMD EPYC 9135 CPUs. For non-
niform meshes, the stretching coefficient 𝑎 = 2.1. As seen in Figs. 12(a)

and 12(b), the absolute MLUPS values reveal that the in-house LBM
solver consistently sustains throughput at 𝑂(10) MLUPS across all tested
grid sizes, while Nek5000 and OpenFOAM are two to three orders
of magnitude slower and exhibit decreasing performance as the grid
size increases. On the largest grids, the throughput of Nek5000 and
OpenFOAM drops to near 𝑂(10−1) MLUPS, whereas the in-house LBM
solver maintains nearly constant performance, demonstrating resilience
to increasing problem size. The normalized MLUPS results in Figs. 12(c)
and 12(d) further highlight the relative efficiency of the three solvers:
Nek5000 and OpenFOAM achieve at most a few percent of the LBM
performance, with the performance gap widening at higher resolutions,
particularly on non-uniform meshes. By contrast, the relative advantage
of the LBM solver remains robust or even improves as the grid size
increases.

Figs. 13(a) and 13(b) further show the absolute WCTpDT values
as functions of grid number on uniform and non-uniform meshes,
respectively. On uniform meshes, the in-house LBM solver consistently
achieves shorter runtimes than Nek5000, while OpenFOAM is slightly
more efficient at the coarsest grid but quickly loses this advantage
as the resolution increases, eventually becoming the most expensive
solver. On non-uniform meshes, OpenFOAM again performs best at the
smallest grid, but its cost grows steeply with resolution, surpassing both
LBM and Nek5000 by more than an order of magnitude at the largest
grids. Nek5000, by contrast, scales more smoothly and maintains a
modest runtime advantage over LBM across all non-uniform grid sizes.
The normalized results in Figs. 13(c) and 13(d) further highlight these
trends. On uniform meshes, Nek5000 requires approximately 3–5 times
the runtime of LBM per unit dimensionless time, while OpenFOAM
starts faster at coarse grids but becomes significantly more expensive at
higher resolutions. On non-uniform meshes, Nek5000 consistently out-
erforms LBM, requiring only about 50%–80% of its runtime, whereas
penFOAM undergoes a sharp transition from being the fastest solver
t small grids to the least efficient at the large grids, exceeding LBM’s
ost by a factor of 5–6. Although Nek5000 and OpenFOAM employ
arger CFL numbers (0.5 and 0.9, respectively) than the LBM solver,
hich should in principle reduce their cost per simulated physical

ime, their substantially higher per-step computational overhead offsets
his benefit. Consequently, WCTpDT values for both remain larger,
articularly at high resolutions. As the grid size increases, the efficiency
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Fig. 12. Performance comparison of in-house LBM solver, Nek5000 and OpenFOAM in terms of MLUPS. (a, b) Absolute MLUPS as a function of grid number,
c, d) MLUPS normalized by the corresponding LBM solver, on (a, c) uniform and (b, d) non-uniform meshes.
Fig. 13. Performance comparison of in-house LBM solver, Nek5000 and OpenFOAM solvers in terms of WCTpDT. (a, b) Absolute WCTpDT as a function of grid
number, (c, d) the WCTpDT normalized by the corresponding LBM solver, on (a, c) uniform and (b, d) non-uniform meshes.
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gap widens further, establishing the LBM solver as a favorable choice
for advancing large-scale 3-D simulations.

To further assess the computational efficiency of the in-house 3-D
BM solver on modern GPU architecture, we performed additional tests
n an NVIDIA A100 GPU. Fig. 14 compares the solver’s performance
14 
for uniform and non-uniform meshes. As shown in Fig. 14(a), the
LUPS values on uniform meshes consistently exceed those on non-

niform meshes across all tested grid sizes. The normalized MLUPS in
Fig. 14(b) indicates that non-uniform grids achieve only about 60%–
5% of the performance of uniform grids, with a slight downward



A. Xu et al.

v

s
m
G
(
p
a
3
1
a
l
e
i
g
s

s
b
I
s
e
q

International Journal of Heat and Mass Transfer 255 (2026) 127790 
Fig. 14. GPU performance of the in-house LBM solver on an NVIDIA A100 for uniform and non-uniform meshes: (a) Absolute MLUPS as a function of grid number,
(b) MLUPS normalized by the uniform-mesh performance at each grid; (c) WCTpDT as a function of grid number; (d) WCTpDT normalized by the corresponding
alue for uniform meshes.
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trend as resolution increases. Fig. 14(c) shows that the WCTpDT grows
nearly linearly with grid size for both mesh types, while Fig. 14(d)
confirms that the relative overhead of non-uniform meshes remains
close to a factor of three across resolutions. Compared with the 2-D
case, the relative throughput loss is similar, but the absolute runtime
penalty is more pronounced in 3-D, reflecting the higher computational
and memory demands of large-scale simulations. Overall, the solver
retains excellent scalability and GPU efficiency in three dimensions,
ensuring its applicability to practical large-scale problems even when
non-uniform discretizations are employed.

For 3-D simulations, the cost estimation is as follows. Consider a
imulation at 𝑅𝑎 = 107 and 𝑃 𝑟 = 0.71 using a 4003 non-uniform
esh with a stretching coefficient of 𝑎 = 2.1. On an NVIDIA A100
PU, the wall-clock time required to advance the simulation by 1 𝑡𝑓

i.e. WCTpDT) is 1.456 × 103 s ≈ 0.40 h. Thus, the corresponding cost
er 𝑡𝑓 is 0.40 h× 7 RMB/h ≈ 2.83 RMB. For Nek5000, the time per 𝑡𝑓 is
bout 1.33484 × 105 s ≈ 37.08 h, yielding a cost of 37.08 h× 0.1 RMB/h ≈
.71 RMB. For OpenFOAM, the time per 𝑡𝑓 is about 5.576363 × 106 s ≈
549.0 h, yielding 1549.0 h × 0.1 RMB/h ≈ 154.90 RMB. When Nek5000
nd OpenFOAM run on multi-core CPU architectures, scalability is
imited by communication overhead and memory contention, and their
ffective performance falls short of ideal expectations, resulting in
ncreased wall-clock times and overall computational cost. We expect
reater economic advantage of the GPU-based LBM solver in large-scale
imulations.

5. Conclusion

In this study, we systematically evaluated an interpolation-
upplemented lattice Boltzmann method (ISLBM) for simulating
uoyancy-driven thermal convection on non-uniform meshes. The
SLBM enables local mesh refinement near solid boundaries to resolve
teep thermal and velocity gradients, while retaining the computational
fficiency of the standard LBM in the bulk flow. By incorporating
uadratic interpolation during the streaming step, the ISLBM achieves
15 
nearly third-order accuracy for global quantities and about second-
order for local fields. The method was validated through benchmark
simulations of laminar thermal convection in a side-heated cavity at

ayleigh numbers 106 ≤ 𝑅𝑎 ≤ 108 in 2-D and 105 ≤ 𝑅𝑎 ≤ 107 in 3-D,
emonstrating excellent agreement with high-fidelity reference data.
he results demonstrate second-order spatial accuracy for local temper-
ture and velocity fields, and nearly third-order accuracy for vorticity
nd volume-integrated quantities. Furthermore, a careful assessment
f compressibility effects confirmed that the solver remains within a

nearly incompressible regime, with only minimal numerical divergence
even at elevated Rayleigh numbers.

We also assessed the computational performance of the in-house
LBM solver by benchmarking it against two widely used open-source
solvers: Nek5000 based on the spectral element method, and Open-
FOAM based on the finite volume method. Using performance metrics
such as MLUPS and WCTpDT, our results consistently demonstrate that
the ISLBM outperforms these solvers in large-scale simulations. When
deployed on GPU architecture, the ISLBM maintains high computa-
tional performance. In terms of MLUPS, the throughput on non-uniform
meshes reaches approximately 60%–70% of that achieved on uniform

eshes; in terms of WCTpDT, however, the computational cost on
non-uniform meshes is about three times higher than that on uni-
form meshes, mainly due to the overhead of quadratic interpolation
nd irregular memory access patterns. Despite this penalty, the solver

exhibits excellent scalability and GPU efficiency, enabling practical
large-scale simulations on contemporary accelerator hardware.

While the ISLBM was originally proposed by He et al. [26–28], to
the best of our knowledge no prior work has conducted a systematic
and quantitative evaluation of its performance for thermally driven
flows at high Rayleigh numbers on non-uniform meshes. This study is,
to our knowledge, the first to: (i) implement quadratic interpolation-
based streaming to simulate thermal convection on non-uniform meshes
at high Rayleigh numbers; (ii) quantitatively evaluate accuracy, conver-
gence order, divergence control, and computational efficiency; and (iii)
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benchmark the ISLBM against high-fidelity solvers (Nek5000 and Open-
OAM) using rigorous MLUPS and WCTpDT metrics, including GPU-
ased performance tests. Our results demonstrate that the interpolation-
upplemented LBM provides a robust and efficient framework for

simulating thermally driven flows on non-uniform meshes. Its demon-
strated accuracy, stability, computational efficiency, and scalability

ake it a promising candidate for future extensions to fully turbulent
onvection at extreme Rayleigh numbers.
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