
International Journal of Heat and Mass Transfer 218 (2024) 124758

Contents lists available at ScienceDirect

International Journal of Heat and Mass Transfer

journal homepage: www.elsevier.com/locate/ijhmt

Particle-resolved thermal lattice Boltzmann simulation using OpenACC on

multi-GPUs

Ao Xu a,b,c,∗, Bo-Tao Li a

a School of Aeronautics, Northwestern Polytechnical University, Xi’an 710072, China
b Institute of Extreme Mechanics, Northwestern Polytechnical University, Xi’an 710072, China
c Key Laboratory of Icing and Anti/De-icing, China Aerodynamics Research and Development Center, Mianyang 621000, China

A R T I C L E I N F O A B S T R A C T

Keywords:

Particle-laden flow

Thermal convection

Lattice Boltzmann method

GPU computing

OpenACC

We utilize the Open Accelerator (OpenACC) approach for graphics processing unit (GPU) accelerated particle-

resolved thermal lattice Boltzmann (LB) simulation. We adopt the momentum-exchange method to calculate
fluid-particle interactions to preserve the simplicity of the LB method. To address load imbalance issues, we
extend the indirect addressing method to collect fluid-particle link information at each timestep and store
indices of fluid-particle link in a fixed index array. We simulate the sedimentation of 4,800 hot particles in
cold fluids with a domain size of 40002, and the simulation achieves 1750 million lattice updates per second
(MLUPS) on a single GPU. Furthermore, we implement a hybrid OpenACC and message passing interface
(MPI) approach for multi-GPU accelerated simulation. This approach incorporates four optimization strategies,
including building domain lists, utilizing request-answer communication, overlapping communications with
computations, and executing computation tasks concurrently. By reducing data communication between GPUs,
hiding communication latency through overlapping computation, and increasing the utilization of GPU resources,
we achieve improved performance, reaching 10846 MLUPS using 8 GPUs. Our results demonstrate that the
OpenACC-based GPU acceleration is promising for particle-resolved thermal lattice Boltzmann simulation.
1. Introduction

Particle-laden thermal convection occurs ubiquitously in nature and
daily life [1,2]. For example, under the action of a wind field, sand
particles of different sizes follow the airflow with suspended or leaping
motion, and these particles may form dust storms by unstable thermal
conditions during strong winds [3]. Another example is that under the
influence of air conditioning and the ventilation system, atmospheric
pollutant particles (PM10 and PM2.5) originating from dust and smoke
can be suspended in the air for an extended period, and they may spread
to a wider area with the aid of airflow [4].

Numerical models for simulating particle-laden flows can be gener-

ally classified into two categories [5]: the point-particle model and the
particle-resolved model. In the point-particle model, solid particles are
treated as discrete masses that are much smaller than the mesh size of
the computational grid. Empirical correlations, such as Stokes’ viscous
drag law, are used to calculate forces exerted on the solid particles by
the fluid. The advantage of the point-particle model is its relatively low
computational load, making it suitable for tracking large numbers of

* Corresponding author at: School of Aeronautics, Northwestern Polytechnical University, Xi’an 710072, China.

particles (but with limited particle volume fractions) [6–9]. In contrast,
in the particle-resolved model, particle sizes are larger than the reso-

lution of the computational grid (known as finite-size particles). They
ensure the no-slip velocity boundary condition at the particle surface,
and the forces and moments acting on the particles by the fluid are
explicitly calculated by considering the interaction between the fluid
phase and the solid phase. The advantage of the particle-resolved model
is its ability to accurately describe fluid-particle interactions based
on first principles. Popular particle-resolved model includes the arbi-

trary Lagrangian-Eulerian method [10], immersed boundary method
[11], fictitious domain method [12,13], and lattice Boltzmann (LB)
method [14]. The particle-resolve model can simulate dense suspension
[15–18]; however, their high computational cost limits the number of
particles that can be tracked.

Among these particle-resolved methods, the LB method is fascinat-

ing due to its ability to incorporate mesoscopic physical pictures while
recovering macroscopic physical conservation laws with a relatively
low computational cost. Open-source codes based on the LB method,
including OpenLB [19], Palabos [20], and Sailfish [21], have facili-
0017-9310/© 2023 Elsevier Ltd. All rights reserved.

E-mail address: axu@nwpu.edu.cn (A. Xu).

https://doi.org/10.1016/j.ijheatmasstransfer.2023.124758

Received 12 February 2023; Received in revised form 11 September 2023; Accepted
 25 September 2023

http://www.ScienceDirect.com/
http://www.elsevier.com/locate/ijhmt
mailto:axu@nwpu.edu.cn
https://doi.org/10.1016/j.ijheatmasstransfer.2023.124758
https://doi.org/10.1016/j.ijheatmasstransfer.2023.124758
http://crossmark.crossref.org/dialog/?doi=10.1016/j.ijheatmasstransfer.2023.124758&domain=pdf

A. Xu and B.-T. Li

tated the application of LB simulations in large-scale engineering prob-

lems [22]. Over the past decades, the advancement of general-purpose
graphics processing units (GPUs) has significantly improved high-

performance computing, enabling faster simulations of larger physical
domains or higher computational resolutions [23,24]. Parallel comput-

ing frameworks utilizing GPU architectures can use Open Computing
Language (OpenCL), Compute Unified Device Architecture (CUDA), and
Open Accelerators (OpenACC) [25,26]. A detailed comparison of these
programming standards can be found in our previous work [27,28].
Here, we highlight that, with improved data and task management,
the OpenACC is promising for thermal LB simulation on GPUs [29–31].
As demonstrated in the most recent simulation of fluid flows and heat
transfer in the side-heated convection cell [28], using OpenACC on a
single GPU, the two-dimension (2D) simulation achieved 1.93 billion
lattice updates per second (GLUPS) with a grid number of 81932 , and
the three-dimension (3D) simulation achieved 1.04 GLUPS with a grid
number of 3853, which is more than 76% of the theoretical maximum
performance.

In this paper, we aim to extend our previous OpenACC accelerated
LB simulation of single-phase thermal convection [27,28] to particle-

laden thermal convection. In contrast to previous works [32,33] who
adopted the immersed boundary method to evaluate the fluid-particle
interaction force, we adopt the momentum-exchange method due to
its simplicity and robustness [34–36]. To utilize the computing power
of multi-node GPU clusters, we adopt a hybrid OpenACC and Message
Passing Interface (MPI) approach, in which the OpenACC accelerates
computation on a single GPU, and the MPI synchronizes the information
between multiple GPUs. The rest of this paper is organized as follows.
In Section 2, we introduce numerical details of the LB simulation for
particle-laden thermal convection. In Section 3, we describe the imple-

mentation and optimization details for a single GPU. In Section 4, we
describe the implementation and optimization for multi-GPUs. In Sec-

tion 5, the main findings of this work are summarized.

2. Numerical method

2.1. The LB model for fluid flow and heat transfer

We simulate thermal convection based on the Boussinesq approxi-

mation. We assume the fluid flow is incompressible, and we treat the
temperature as an active scalar that influences the velocity field through
the buoyancy. We neglect viscous heat dissipation and compression
work, and assume all the transport coefficients to be constants. Then,
the governing equations can be written as

∇ ⋅ 𝐮 = 0 (1a)

𝜕𝐮
𝜕𝑡

+ 𝐮 ⋅∇𝐮 = − 1
𝜌0

∇𝑃 + 𝜈∇2𝐮+ 𝑔𝛽𝑇

(
𝑇 − 𝑇0

)
�̂� (1b)

𝜕𝑇

𝜕𝑡
+ 𝐮 ⋅∇𝑇 = 𝛼𝑇∇2𝑇 (1c)

where 𝐮, 𝑃 and 𝑇 are the velocity, pressure, and temperature of the
fluid, respectively. 𝜌0 and 𝑇0 are reference density and temperature,
respectively. 𝜈, 𝛽𝑇 and 𝛼𝑇 denote the viscosity, thermal expansion co-

efficient, and thermal diffusivity of the fluid, respectively. �̂� is the unit
vector parallel to gravity. With the scaling

𝐱∗ = 𝐱∕𝐿0, 𝑡∗ = 𝑡∕
(
𝐿2
0∕𝛼𝑇

)
, 𝐮∗ = 𝐮∕

(
𝛼𝑇 ∕𝐿0

)
,

𝑃 ∗ = 𝑃∕
(
𝜌0𝛼

2
𝑇
∕𝐿2

0
)
, 𝑇 ∗ =

(
𝑇 − 𝑇0

)
∕Δ𝑇

(2)

Then, Eq. (1) can be rewritten in dimensionless form as

∇ ⋅ 𝐮∗ = 0 (3a)

𝜕𝐮∗
𝜕𝑡∗

+ 𝐮∗ ⋅∇𝐮∗ = −∇𝑃 ∗ + 𝑃𝑟∇2𝐮∗ +𝐺𝑟𝑃 𝑟2𝑇 ∗�̂� (3b)

𝜕𝑇 ∗
+ 𝐮∗ ⋅∇𝑇 ∗ = ∇2𝑇 ∗ (3c)
2

𝜕𝑡∗
International Journal of Heat and Mass Transfer 218 (2024) 124758

Here, 𝐿0 is the characteristic length and Δ𝑇 is the temperature dif-

ference. Two independent dimensionless parameters are the Prandtl
number (𝑃𝑟) and the Grashof number (𝐺𝑟), which are defined as

𝑃𝑟 = 𝜈

𝛼𝑇

, 𝐺𝑟 =
𝑔𝛽𝑇Δ𝑇 𝐿3

0

𝜈2
(4)

Note a third dimensionless parameter of the Rayleigh number (𝑅𝑎) can
be calculated as 𝑅𝑎 = 𝑃𝑟 ⋅𝐺𝑟.

We adopt the double distribution function (DDF)-based LB model
to simulate thermal convective flows with the Boussinesq approxima-

tion [37–40]. Specifically, we chose a D2Q9 discrete lattice in two-

dimension (2D) for the Navier–Stokes equations to simulate fluid flows,
and a D2Q5 discrete lattice in 2D for the energy equation to simulate
heat transfer. To enhance the numerical stability, the multi-relaxation-

time (MRT) collision operator is adopted in the evolution equations
of both density and temperature distribution functions. The evolution
equation of the density distribution function is written as

𝑓𝑖

(
𝐱 + 𝐞𝑖𝛿𝑡, 𝑡+ 𝛿𝑡

)
− 𝑓𝑖(𝐱, 𝑡) = −

(
𝐌−1𝐒

)
𝑖𝑗

[
𝐦𝑗 (𝐱, 𝑡) −𝐦(eq)

𝑗
(𝐱, 𝑡)

]
+ 𝛿𝑡𝐹

′
𝑖

(5)

where 𝑓𝑖 is the density distribution function. 𝐱 is the fluid parcel posi-

tion, 𝑡 is the time, 𝛿𝑡 is the time step. 𝐞𝑖 is the discrete velocity along the
𝑖th direction. The macroscopic density 𝜌 and velocity 𝐮 are obtained
from 𝜌 = ∑𝑞−1

𝑖=0 𝑓𝑖, 𝐮 =
(∑𝑞−1

𝑖=0 𝐞𝑖𝑓𝑖 +
1
2𝐅

)
∕𝜌, where 𝐅 = 𝜌𝑔𝛽𝑇 (𝑇 − 𝑇0)�̂� is

the buoyancy force.

The evolution equation of the temperature distribution function is
written as

𝑔𝑖

(
𝐱 + 𝐞𝑖𝛿𝑡, 𝑡+ 𝛿𝑡

)
− 𝑔𝑖(𝐱, 𝑡) = −

(
𝐍−1𝐐

)
𝑖𝑗

[
𝐧𝑗 (𝐱, 𝑡) − 𝐧(eq)

𝑗
(𝐱, 𝑡)

]
(6)

where 𝑔𝑖 is the temperature distribution function. The macroscopic tem-

perature 𝑇 is obtained from 𝑇 =
∑𝑞−1

𝑖=0 𝑔𝑖. More numerical details of the
thermal LB method can be found in our previous work [27,28,41–43].

2.2. Kinematic model of the solid particle

We consider the solid particle as a rigid body and its kinematics
include translational and rotational motion. Specifically, we determine
the translational motion of the solid particle using Newton’s second law
as

𝑀𝑝

𝑑𝐔𝑐(𝑡)
𝑑𝑡

= 𝐅𝑝(𝑡) (7)

where 𝑀𝑝 is the mass of the particle, 𝐔𝑐 is the velocity of the particle
center and 𝐅𝑝 is the total force exerted on the solid particle. The rota-

tional motion of the solid particle is determined by Euler’s second law
as

𝐈𝑝 ⋅
𝑑𝛀(𝑡)

𝑑𝑡
+𝛀(𝑡) × [𝐈𝑝 ⋅𝛀(𝑡)] = 𝐓𝑝(𝑡) (8)

where 𝐈𝑝 is the inertial tensor of the particle, 𝛀 is the angular velocity,
and 𝐓𝑝 is the torque exerted on the solid particle. In the simulation, we
advance the fluid flows and the motion of the particles simultaneously.
In other words, the time step used to update fluid and temperature fields
is the same as that used for particles’ kinematic.

2.3. Boundary conditions at the fluid-particle interface

At the particle’s curved surface, we adopt the interpolated bounce-

back scheme to guarantee no-slip velocity boundary conditions. A pa-

rameter 𝑞 = |𝐱𝑓 − 𝐱𝑤|∕|𝐱𝑓 − 𝐱𝑏| is used to describe the fraction of fluid
region in a grid spacing intersected by the solid surface, where 𝐱𝑓 is
the fluid node near the boundary, 𝐱𝑏 is solid node near the boundary,
and 𝐱𝑤 is wall interface. Based on the relative location of 𝐱𝑤 between
𝐱𝑓 and 𝐱𝑏, we adopt a quadratic interpolation scheme of the density

distribution function, which is given as [44]: for 𝑞 ≤ 0.5

A. Xu and B.-T. Li

𝑓𝑖(𝐱𝑓 , 𝑡+ 𝛿𝑡) =𝑞(2𝑞 + 1)𝑓+
𝑖
(𝐱𝑓 , 𝑡) + (1 − 4𝑞2)𝑓+

𝑖
(𝐱𝑓 − 𝐞𝑖𝛿𝑡, 𝑡)

− 𝑞(1 − 2𝑞)𝑓+
𝑖
(𝐱𝑓 − 2𝐞𝑖𝛿𝑡, 𝑡) + 2𝜔𝑖𝜌0

𝐞𝑖 ⋅ 𝐮𝑤

𝑐2
𝑠

(9)

for 𝑞 > 0.5

𝑓𝑖(𝐱𝑓 , 𝑡+ 𝛿𝑡) =
1

𝑞(2𝑞 + 1)
𝑓+

𝑖
(𝐱𝑓 , 𝑡) + 2𝑞 − 1

𝑞
𝑓+

𝑖
(𝐱𝑓 , 𝑡)

− 2𝑞 − 1
2𝑞 + 1

𝑓+
𝑖
(𝐱𝑓 − 𝐞𝑖𝛿𝑡, 𝑡) +

1
𝑞(2𝑞 + 1)

2𝜔𝑖𝜌0
𝐞𝑖 ⋅ 𝐮𝑤

𝑐2
𝑠

(10)

where 𝑓𝑖 is the distribution function associated with the velocity 𝐞𝑖 =
−𝐞𝑖. It should be noted that Bouzidi’s method requires information from
the current fluid nodes as well as its adjacent nodes (i.e., information
at 𝐱𝑓 , 𝐱𝑓 − 𝐞𝑖𝛿𝑡, and 𝐱𝑓 − 2𝐞𝑖𝛿𝑡), which poses a challenge to the lo-

cal computation property of the LB method. To address this issue, an
alternative method is a single-node second-order curved boundary con-

dition [45,46]. The accuracy, stability, and parallel efficiency of those
single-node methods for particle-resolved simulation deserve further
comprehensive investigation.

Meanwhile, we assume the fluids and particle temperatures are
equal to a constant 𝑇𝑤 at the surface of the particle. Then the bounce-

back scheme for temperature distribution function at curved wall
boundaries is given as [47,48]

𝑔𝑖(𝐱𝑓 , 𝑡+ 𝛿𝑡) =
[
𝑐𝑑1𝑔

+
𝑖
(𝐱𝑓 , 𝑡) + 𝑐𝑑2𝑔

+
𝑖
(𝐱𝑓 − 𝐞𝑖𝛿𝑡, 𝑡) + 𝑐𝑑3𝑔

+
𝑖
(𝐱𝑓 , 𝑡)

]
+ 𝑐𝑑4(2𝜔𝑖𝑇𝑤)

(11)

where 𝑔𝑖 is the distribution function associated with the velocity 𝐞𝑖 =
−𝐞𝑖, and 𝑔+

𝑖
is the post-collision distribution function. The coefficients

𝑐𝑑,1−4 are given as

𝑐𝑑1 = −1, 𝑐𝑑2 =
2𝑞 − 1
2𝑞 + 1

, 𝑐𝑑3 =
2𝑞 − 1
2𝑞 + 1

, 𝑐𝑑4 =
2

2𝑞 + 1
(12)

2.4. Interaction between fluid and particle phases

We adopt the momentum-exchange method to calculate the force
and torque exerted by the fluid on the solid particle due to its simplicity
and robustness [34]. Specifically, the hydrodynamic force acting on the
solid surface is obtained by summing up the local momentum exchange
of the fluid parcels during the bounce-back process. Because the orig-

inal momentum-exchange method proposed by Ladd [34] lacks local
Galilean invariance [49], we employ a modified momentum-exchange
method that simply introduces the relative velocity into the interfacial
momentum transfer [36], then the total hydrodynamic force is calcu-

lated as

𝐅 =
∑
𝐱𝑓

∑
𝑖𝑏𝑙

[
𝑓+

𝑖
(𝐱𝑓 , 𝑡)(𝐞𝑖 − 𝐮𝑤) − 𝑓𝑖(𝐱𝑓 , 𝑡+ 𝛿𝑡)(𝐞𝑖 − 𝐮𝑤)

]
(13)

and the total torque is calculated as

𝐓 =
∑
𝐱𝑓

∑
𝑖𝑏𝑙

(𝐱𝑤 − 𝐱𝑐) ×
[
𝑓+

𝑖
(𝐱𝑓 , 𝑡)(𝐞𝑖 − 𝐮𝑤) − 𝑓𝑖(𝐱𝑓 , 𝑡+ 𝛿𝑡)(𝐞𝑖 − 𝐮𝑤)

]
(14)

A pair of particles will collide when their distance is small. We
adopt the artificial repulsive force model to prevent overlap between
the computational particles. Here, we choose the spring force model
that generates a strong repulsive force pushing the two collision parti-

cles apart [50], then the repulsive force is given as

𝐅repulsive =
⎧⎪⎨⎪⎩
0 if |𝐱𝑠| > 𝑠,

𝐶

𝜀𝑤

(|𝐱𝑠|−𝑠

𝑠

)2 𝐱𝑠|𝐱𝑠| if |𝐱𝑠| ≤ 𝑠.
(15)

Here, 𝜀𝑤 represents the stiffness parameter and 𝑠 represents the thresh-

old distance. We choose 𝜀𝑤 = 0.001 and 𝑠 = 3 l.u., where l.u. denotes
the lattice length-unit in the LB simulation [51]. 𝐶 = 𝜋𝑟2

𝑝
(𝜌𝑝 − 𝜌𝑓)𝑔 is

the force scale, 𝐱𝑠 denotes the vector with the smallest norm value that
3

points from the wall to the particle.
International Journal of Heat and Mass Transfer 218 (2024) 124758

2.5. Refilling scheme to construct unknown distribution functions

When the particle moves relative to the fixed grids, a solid node
may be uncovered by the particle and become a fluid node. To deter-

mine unknown density distribution functions for this new ‘born’ fluid
node, we use the normal extrapolation refilling scheme with velocity
constraint [52,53]. Specifically, we first determine the direction of a
discrete velocity 𝐞𝑐 that maximizes the quantity 𝐧 ⋅ 𝐞𝑐 , where 𝐧 is the
outward normal vector of the wall at the newborn fluid node. Then the
unknown density distribution functions at the newborn fluid node are
obtained by a quadratic extrapolation

𝑓𝛼(𝐱𝑛𝑒𝑤, 𝑡+ 𝛿𝑡) =3𝑓𝛼(𝐱𝑛𝑒𝑤 + 𝐞𝑐𝛿𝑡, 𝑡+ 𝛿𝑡) − 3𝑓𝛼(𝐱𝑛𝑒𝑤 + 2𝐞𝑐𝛿𝑡, 𝑡+ 𝛿𝑡)

+ 𝑓𝛼(𝐱𝑛𝑒𝑤 + 3𝐞𝑐𝛿𝑡, 𝑡+ 𝛿𝑡) (16)

In the MRT framework, the velocity at the new fluid node can be con-

strained to the wall velocity via enforcing the momentum moments,
which can reduce the fluctuations in the fluid-particle forces [53].

Meanwhile, to determine unknown temperature distribution func-

tions for the new ‘born’ fluid node, we use the equilibrium refilling
scheme [52,54] for simplify, which is

𝑔𝛼(𝐱𝑛𝑒𝑤, 𝑡+ 𝛿𝑡) = 𝑔𝑒𝑞
𝛼
(𝑇𝑤,𝐮𝑤) (17)

2.6. Validation of the particle-resolved LB model

The accuracy of the particle-resolved LB model described above has
been validated in our previous work [55] via simulation of an elliptical
particle settling in isothermal fluids, and a cold circular particle settling
in a hot fluid. Furthermore, our results on an elliptical particle settling
in thermal fluids have been confirmed by Walayat et al. [56] as well as
Suzuki et al. [17]. Additionally, we compare the simulation results ob-

tained from the multi-GPU simulation with those of the CPU simulation
in Appendix A. Moreover, we validate the model for particle-particle in-

teraction via simulating the draft-kissing-tumbling (DKT) process with
thermal convection in Appendix B. In the following subsections, we will
validate the model by simulating the sedimentation of multiple parti-

cles.

2.6.1. Sedimentation of a group of 800 circular particles in isothermal
fluids

Initially, the particles are placed in the upper part of a square cav-

ity with dimensions of 5 cm × 5 cm. All four walls of the cavity are
imposed with no-slip velocity boundary conditions. There are 20 lines
of particles, each containing 40 particles, resulting in a total of 800
particles [see Fig. 1(a)]. Each particle has a density of 𝜌𝑝 = 1.1 g/cm3

and a diameter of 𝑑𝑝 = 1 mm, resulting in a particle volume fraction
of 25.1%. To mimic the working fluid of water, we set its viscosity as
𝜈𝑓 = 10−6 m2/s and its density as 𝜌𝑓 = 1 g/cm3. Following Yu et al.
[57], we adopt a reference velocity 𝑈𝑟𝑒𝑓 =

√
𝑔𝜋𝑑𝑝(𝜌𝑝 − 𝜌𝑓)∕(2𝜌𝑓) to de-

fine the particle Reynolds number 𝑅𝑒𝑝 = 𝑈𝑟𝑒𝑓 𝑑𝑝∕𝜈𝑓 , which is related to
the Archimedes number 𝐴𝑟 =

√
𝑔𝑑3

𝑝
(𝜌𝑝 − 𝜌𝑓)∕(𝜈2𝑓 𝜌𝑓) as 𝑅𝑒𝑝 =

√
𝜋∕2𝐴𝑟.

In this case, we have 𝑅𝑒𝑝 = 12.41 and 𝐴𝑟 = 9.90. A detailed setting for
simulation parameters is listed in Table 1. In Fig. 1, we present the con-

tours of the vorticity field during particle sedimentation. The settling
of particle clusters was initially relatively uniform, although particles
nearer to the wall exhibited faster settling due to the influence of wall
vorticity at 𝑡 = 3.125 s [see Fig. 1(b)]. Over time, the particles gradually
assumed distinct shapes, with an umbrella-like formation appearing at
𝑡 = 5 s [see Fig. 1(c)], followed by the emergence of a bubble-like shape
region in the center of the cavity’s lower half at 𝑡 = 6.25 s [see Fig. 1(d)].
As the settling process continued, the particles began to converge in the
center of the lower wall [see Fig. 1(e)], and eventually ruptured the
bubble region of the cavity [see Figs. 1(f) an 1(g)]. Ultimately, the par-
ticles accumulated at the bottom of the cavity, and the fluid gradually

International Journal of Heat and Mass Transfer 218 (2024) 124758A. Xu and B.-T. Li

Table 1

Simulation parameters for the sedimentation of circular particles in isothermal fluids. Here,
l.u. denotes the lattice length-unit and t.s. denotes the lattice time-step in the LB simulation
[51]. The length unit conversion is 𝑙∗ = 2.5 × 10−5 m/l.u., and the time unit conversion is
𝑡∗ = 3.125 × 10−5 s/t.s.

Physical system LB system Unit conversion

Domain size 𝑊 ×𝐻 = 5 cm × 5 cm 𝑊 ×𝐻 = 2000 l.u. × 2000 l.u. 𝐱 = 𝐱 ⋅ 𝑙∗
Particle diameter 𝑑𝑝 = 1 mm 𝑑𝑝 = 40 l.u. 𝑑𝑝 = 𝑑𝑝 ⋅ 𝑙∗
Kinematic viscosity 𝜈𝑓 = 10−6 m2/s 𝜈𝑓 = 0.05 l.u.2/t.s. 𝜈𝑓 = 𝜈𝑓 ⋅ 𝑙2∗∕𝑡∗
Gravity acceleration 𝑔 = 9.8 m/s2 𝑔 = 3.83 × 10−4 l.u./t.s.2 𝑔 = 𝑔 ⋅ 𝑙∗∕𝑡2∗

Fig. 1. Contour of vorticity field during the sedimentation of 800 circular particles in isothermal fluids. (a) 𝑡 = 0 s, (b) 𝑡 = 3.125 s, (c) 𝑡 = 5 s, (d) 𝑡 = 6.25 s, (e) 𝑡 = 6.875
s, (f) 𝑡 = 8.75 s, (g) 𝑡 = 10 s, (h) 𝑡 = 17.5 s, (i) 𝑡 = 25 s.
returned to stationary state [see Fig. 1(h)]. After 25 s, the particles set-

tled entirely and packed on the bottom wall [see Fig. 1(i)]. The overall
patterns observed in the simulations are consistent with previous stud-

ies [15,50,58].

2.6.2. Sedimentation of a group of 172 circular or elliptical hot particles in
cold fluids

We first consider the sedimentation of circular hot particles in cold
fluids. Initially, 172 particles are placed in the upper part of the rectan-

gular cavity, forming a circular cluster. The size of the cavity is 𝑊 ×𝐻

= 2 cm × 4 cm, and all four walls of the cavity are imposed no-slip
velocity boundary conditions. Each particle has a density of 𝜌𝑝 = 1.5
g/cm3 and a diameter of 𝑑𝑝 = 1 mm, resulting in a particle volume
fraction of 16.9%. The position of the particle cluster is initialized as
4

follows: the center of the cluster is occupied by one particle, located at
(0.5𝑊 , 0.75𝐻), and seven layers of particles are then spread outward in
a uniform ring shape, with the number of particles in each layer being 6,
12, 18, 24, 31, 37, 43 [see Fig. 2(a)]. To mimic the working fluid of wa-

ter, we set its viscosity as 𝜈𝑓 = 10−6 m2/s and its density as 𝜌𝑓 = 1 g/cm3.
We adopt a reference velocity 𝑈𝑟𝑒𝑓 =

√
𝑔𝜋𝑑𝑝(𝜌𝑝 − 𝜌𝑓)∕(2𝜌𝑓) to define the

particle Reynolds number 𝑅𝑒𝑝 = 𝑈𝑟𝑒𝑓 𝑑𝑝∕𝜈𝑓 , and the Archimedes number
is 𝐴𝑟 =

√
𝑔𝑑3

𝑝
(𝜌𝑝 − 𝜌𝑓)∕(𝜈2𝑓 𝜌𝑓). In this case, we have 𝑅𝑒𝑝 = 87.7 and 𝐴𝑟 =

70.0. We set the surface temperature of the particles to be a constant
high-temperature 𝑇 = 𝑇ℎ, the wall of the square cavity to be a constant
low-temperature 𝑇 = 𝑇𝑐 , and the initial temperature of the fluid also be
a low-temperature 𝑇𝑐 ; thus, the temperature difference is Δ𝑇 = 𝑇ℎ − 𝑇𝑐 .
We choose the particle Grashof number 𝐺𝑟𝑝 = 𝑔𝛽𝑇Δ𝑇 𝑑3

𝑝
∕𝜈2

𝑓
= 100, and

the Prandtl number 𝑃𝑟 = 5. A detailed setting for simulation parameters

is listed in Table 2. In Fig. 2, we present the contours of the tempera-

International Journal of Heat and Mass Transfer 218 (2024) 124758A. Xu and B.-T. Li

Table 2

Simulation parameters for the sedimentation of circular hot particles in cold fluids. Here, t.u. denotes
the temperature unit in the LB simulation [51]. The length unit conversion is 𝑙∗ = 2.5 ×10−5 m/l.u., the
time unit conversion is 𝑡∗ = 6.25 × 10−6 s/t.s., and the temperature unit conversion is 𝑇∗ = 48.6 K/t.u.

Physical system LB system Unit conversion

Domain size 𝑊 ×𝐻 = 2 cm × 4 cm 𝑊 ×𝐻 = 800 l.u. × 1600 l.u. 𝐱 = 𝐱 ⋅ 𝑙∗
Particle diameter 𝑑𝑝 = 1 mm 𝑑𝑝 = 40 l.u. 𝑑𝑝 = 𝑑𝑝 ⋅ 𝑙∗
Kinematic viscosity 𝜈𝑓 = 10−6 m2/s 𝜈𝑓 = 0.01 l.u.2/t.s. 𝜈𝑓 = 𝜈𝑓 ⋅ 𝑙2∗∕𝑡∗
Thermal diffusivity 𝛼𝑇 = 2 × 10−5 m2/s 𝛼𝑇 = 0.002 l.u.2/t.s. 𝛼𝑇 = 𝛼𝑇 ⋅ 𝑙2∗∕𝑡∗
Gravity acceleration 𝑔 = 9.8 m/s2 𝑔 = 1.53 × 10−5 l.u./t.s.2 𝑔 = 𝑔 ⋅ 𝑙∗∕𝑡2∗
Thermal expansion coefficient 𝛽 = 2.1 × 10−4 K−1 𝛽 = 1.02 × 10−2 t.u.−1 𝛽 = 𝛽∕𝑇∗
Temperature difference Δ𝑇 = 48.6 K Δ𝑇 = 1 t.u. Δ𝑇 =Δ𝑇 ⋅ 𝑇∗

Fig. 2. Contour of dimensionless temperature field 𝑇 ∗ = (𝑇 − 𝑇𝑐)∕Δ𝑇 during the sedimentation of 172 circular hot particles in cold fluids at the dimensionless time
𝑡∗ = 𝑡∕

√
𝑑𝑝∕𝑔 of (a) 0, (b) 7.42, (c) 14.85, (d) 22.27, (e) 29.70, (f) 61.87, (g) 84.15, (h) 180.67.
ture field during particle sedimentation. As the particle cluster settles,
the particles closest to the vertical centerline experience a faster rate of
settling than those located near the walls. The walls impede the settling
of the particles, causing the cluster to contort into a pine cone shape
[see Fig. 2(b)]. Subsequently, the particles close to the walls are swept
upward, elongating the cluster into a crescent shape [see Figs. 2(c) and
2(d)]. As the sedimentation continues, the particle cluster becomes an
irregular shape with the generation of numerous thermal plumes [see
Figs. 2(e) and 2(f)], and these plumes play a significant role in push-

ing and mixing the particles. Eventually, most of the particles settle at
the bottom of the cavity; however, due to buoyancy, some particles still
float for an extended period before they can finally settle [see Figs. 2(g)
and 2(h)]. The overall patterns observed in the simulations are consis-

tent with previous studies [16,59,60].

We then consider the sedimentation of elliptical hot particles in
cold fluids. Initially, 129 particles are placed in the upper part of the
rectangular cavity, forming a circular cluster. The size of the cavity is
𝑊 × 𝐻 = 1 cm × 2 cm, and all four walls of the cavity impose no-

slip velocity boundary conditions. Each particle has a density of 𝜌𝑝 =
1.5 g/cm3, a major axis of 𝐴 = 0.5 mm and a minor axis of 𝐵 =
0.25 mm, resulting in a particle volume fraction of 6.3%. The posi-
5

tion of the particle cluster is initialized as follows: the center of the
cluster is occupied by one particle, located at (0.5𝑊 , 0.75𝐻), and six
layers of particles are then spread outward in a uniform ring shape
with the number of particles in each layer being 6, 12, 18, 24, 31, 37
[see Fig. 3(a)]. To mimic the working fluid of water, we set its vis-

cosity as 𝜈𝑓 = 10−6 m2/s and its density as 𝜌𝑓 = 1 g/cm3. We adopt
a reference velocity 𝑈𝑟𝑒𝑓 =

√
𝑔𝜋𝐴(𝜌𝑝 − 𝜌𝑓)∕(2𝜌𝑓) to define the parti-

cle Reynolds number 𝑅𝑒𝑝 = 𝑈𝑟𝑒𝑓 𝑑𝑝∕𝜈𝑓 , and the Archimedes number is
𝐴𝑟 =

√
𝑔𝑑3

𝑝
(𝜌𝑝 − 𝜌𝑓)∕(𝜈2𝑓 𝜌𝑓). In this case, we have 𝑅𝑒𝑝 = 31.0 and 𝐴𝑟 =

24.7. We set the surface temperature of the particles to be a constant
high-temperature 𝑇 = 𝑇ℎ, the wall of the square cavity to be a constant
low-temperature 𝑇 = 𝑇𝑐 , and the initial temperature of the fluid also be
a low-temperature 𝑇𝑐 ; thus, the temperature difference is Δ𝑇 = 𝑇ℎ − 𝑇𝑐 .
We choose the particle Grashof number 𝐺𝑟𝑝 = 𝑔𝛽𝑇Δ𝑇 𝐴3∕𝜈2

𝑓
= 10, and

the Prandtl number 𝑃𝑟 = 5. A detailed setting for simulation parameters
is listed in Table 3. In Fig. 3, we present the contours of the temperature
field during particle sedimentation. We can see that the collective mo-

tion of elliptical particles during sedimentation is qualitatively the same
as that of circular particles: the initially placed cluster is contorted into
a pine cone shape, followed by elongating into a crescent shape, and
then an irregular shape. Previously, we identified an anomalous rolling

mode and an inclined mode for a single hot elliptical particle settling in

International Journal of Heat and Mass Transfer 218 (2024) 124758A. Xu and B.-T. Li

Table 3

Simulation parameters for the sedimentation of elliptical hot particles in cold fluids. The length unit con-

version is 𝑙∗ = 10−5 m/l.u., the time unit conversion is 𝑡∗ = 10−6 s/t.s., and the temperature unit conversion
is 𝑇∗ = 38.9 K/t.u.

Physical system LB system Unit conversion

Domain size 𝑊 ×𝐻 = 1 cm × 2 cm 𝑊 ×𝐻 = 1000 l.u. × 2000 l.u. 𝐱 = 𝐱 ⋅ 𝑙∗
Particle size 𝐴 ×𝐵 = 0.5 mm × 0.25 mm 𝐴 ×𝐵 = 50 l.u. × 25 l.u. 𝑑𝑝 = 𝑑𝑝 ⋅ 𝑙∗
Kinematic viscosity 𝜈𝑓 = 10−6 m2/s 𝜈𝑓 = 0.01 l.u.2/t.s. 𝜈𝑓 = 𝜈𝑓 ⋅ 𝑙2∗∕𝑡∗
Thermal diffusivity 𝛼𝑇 = 2 × 10−5 m2/s 𝛼𝑇 = 0.002 l.u.2/t.s. 𝛼𝑇 = 𝛼𝑇 ⋅ 𝑙2∗∕𝑡∗
Gravity acceleration 𝑔 = 9.8 m/s2 𝑔 = 9.8 × 10−7 l.u./t.s.2 𝑔 = 𝑔 ⋅ 𝑙∗∕𝑡2∗
Thermal expansion coefficient 𝛽 = 2.1 × 10−4 K−1 𝛽 = 8.16 × 10−3 t.u.−1 𝛽 = 𝛽∕𝑇∗
Temperature difference Δ𝑇 = 38.9 K Δ𝑇 = 1 t.u. Δ𝑇 =Δ𝑇 ⋅ 𝑇∗

Fig. 3. Contour of dimensionless temperature field 𝑇 ∗ = (𝑇 − 𝑇𝑐)∕Δ𝑇 during the sedimentation of 129 elliptical hot particles in cold fluids at the dimensionless time
𝑡∗ = 𝑡∕

√
𝐴∕𝑔 of (a) 0, (b) 14.0, (c) 28.0, (d) 42.0, (e) 56.0, (f) 84.0, (g) 140.0, (h) 196.0.
cold fluids [55], suggesting particle shape plays a critical role in affect-

ing the sedimentation; whether there is a new physical mechanism on
multiple elliptical particles sedimentation deserves further study within
a wide range of control parameters.

2.6.3. Sedimentation of 4,800 circular hot particles in cold fluids

To better utilize the computing power of the GPUs, we also simulate
the sedimentation of a large number of 4,800 circular hot particles in
cold fluids. The size of the cavity is 𝑊 ×𝐻 = 8 cm × 8 cm, and all four
walls of the cavity impose no-slip velocity boundary conditions. Each
particle has a density of 𝜌𝑝 = 1.1 g/cm3 and a diameter of 𝑑𝑝 = 0.8 mm,
resulting in a particle volume fraction of 37.7%. Initially, the particles
are placed in the upper part of a square cavity, and there are 60 lines
of particles with each line having 80 particles [see Fig. 4(a)]. To mimic
the working fluid of water, we set its viscosity as 𝜈𝑓 = 10−6 m2/s and its
density as 𝜌𝑓 = 1 g/cm3. In this case, we have 𝑅𝑒𝑝 = 𝑈𝑟𝑒𝑓 𝑑𝑝∕𝜈𝑓 = 28.1

and 𝐴𝑟 =
√

𝑔𝑑3
𝑝
(𝜌𝑝 − 𝜌𝑓)∕(𝜈2𝑓 𝜌𝑓) = 22.4. We set the surface temperature

of the particles to be a constant high-temperature 𝑇 = 𝑇ℎ, the wall of the
square cavity to be a constant low-temperature 𝑇 = 𝑇𝑐 , and the initial
temperature of the fluid also be a low-temperature 𝑇𝑐 ; thus, the temper-
6

ature difference is Δ𝑇 = 𝑇ℎ −𝑇𝑐 . We choose the particle Grashof number
𝐺𝑟𝑝 = 𝑔𝛽𝑇Δ𝑇 𝑑3
𝑝
∕𝜈2

𝑓
= 60, and the Prandtl number 𝑃𝑟 = 5. A detailed set-

ting for simulation parameters is listed in Table 4. In Fig. 4, we present
the contours of the temperature field during particle sedimentation. The
particles in a fluid mixture tend to settle due to gravity, and they trans-

fer heat to the surrounding fluid through convection, resulting in the
formation of complex flow patterns. The Rayleigh-Taylor instability is a
key mechanism that underlies this process, leading to the formation of
finger-like patterns, bifurcation in flow patterns, coalescence, breaking
of symmetry, and the development of the draft-kissing-tumbling phe-

nomenon. This instability arises from the fact that the heavier particles
tend to sink faster than the lighter fluid above them, thus, the interface
between the two regions becomes unstable and complex vortices are
formed. These vortices, which can vary in size and shape depending on
the properties of the fluid mixture and the geometry of the container,
play a key role in accelerating the mixing process. By pushing the parti-

cles back up to the top of the cavity, the particles are redistributed and
the mixing efficiency is enhanced. However, as the particles become
more evenly distributed, their settling velocity decreases, eventually
leading to a stage of slow settling at the bottom of the container. In
Section 3 and Section 4, we will use this problem as the benchmark to
measure the parallel performance of the particle-resolved thermal LB

simulation.

International Journal of Heat and Mass Transfer 218 (2024) 124758A. Xu and B.-T. Li

Table 4

Simulation parameters for the sedimentation of circular hot particles in cold fluids. The length unit
conversion is 𝑙∗ = 2 × 10−5 m/l.u., the time unit conversion is 𝑡∗ = 4 × 10−6 s/t.s., and the temperature
unit conversion is 𝑇∗ = 56.9 K/t.u.

Physical system LB system Unit conversion

Domain size 𝑊 ×𝐻 = 8 cm × 8 cm 𝑊 ×𝐻 = 4000 l.u. × 4000 l.u. 𝐱 = 𝐱 ⋅ 𝑙∗
Particle diameter 𝑑𝑝 = 0.8 mm 𝑑𝑝 = 40 l.u. 𝑑𝑝 = 𝑑𝑝 ⋅ 𝑙∗
Kinematic viscosity 𝜈𝑓 = 10−6 m2/s 𝜈𝑓 = 0.01 l.u.2/t.s. 𝜈𝑓 = 𝜈𝑓 ⋅ 𝑙2∗∕𝑡∗
Thermal diffusivity 𝛼𝑇 = 2 × 10−5 m2/s 𝛼𝑇 = 0.002 l.u.2/t.s. 𝛼𝑇 = 𝛼𝑇 ⋅ 𝑙2∗∕𝑡∗
Gravity acceleration 𝑔 = 9.8 m/s2 𝑔 = 7.84 × 10−6 l.u./t.s.2 𝑔 = 𝑔 ⋅ 𝑙∗∕𝑡2∗
Thermal expansion coefficient 𝛽 = 2.1 × 10−4 K−1 𝛽 = 1.20 × 10−2 t.u.−1 𝛽 = 𝛽∕𝑇∗
Temperature difference Δ𝑇 = 56.9 K Δ𝑇 = 1 t.u. Δ𝑇 =Δ𝑇 ⋅ 𝑇∗

Fig. 4. Contour of temperature field during the sedimentation of 4,800 circular hot particles in cold fluids at the dimensionless time 𝑡∗ = 𝑡∕
√

𝑑𝑝∕𝑔 of (a) 70.8350, (b)
141.6700, (c) 212.5051, (d) 283.3401. The second row (e-h) and third row (i-l) show successive zooms of the area indicated in the black box.
3. Implementation and optimization on a single GPU

A naïve parallel approach for calculating fluid-particle interactions
(i.e., implementing Eqs. (13) and (14) to obtain hydrodynamic force
and torque, respectively) is to use one GPU thread per computational
grid, with 128 threads working together to handle the calculation. How-

ever, this approach can lead to load imbalance issues because only fluid
nodes near the particle surface perform the calculation. When 128 grids
are processed simultaneously, the threads that are not assigned tasks to
calculate fluid-particle interaction have to wait for all other threads to
complete their calculations. To address this load imbalance issue, we
adopt the indirect addressing method inspired by simulating flows in
porous media [61,62]. Specifically, we collect the grid lines involved
in calculating fluid-particle interaction into a contiguous array in mem-

ory, including the position indices (i.e., 𝑖 and 𝑗 in the two-dimensional
domain) of fluid nodes involved in the hydrodynamic force and torque
computation, as well as the discrete velocity direction (i.e., 𝛼) across the
fluid-particle boundary. The advantage of this method is that only in-

dexes of the participating computational variables are stored, and these
indexed flow variables are all involved in the computation to avoid the
load imbalance issue. In particle-laden flow, due to the motion of par-
7

ticles, the grid link connections may change at each timestep, and the
index information must be collected simultaneously. This is different
from simulating flow in porous media, where the solid skeleton is sta-

tionary, and the indirectly addressed indexes only need to be calculated
once throughout the simulation.

In addition, we establish a fixed mapping between the fluid-particle
grid and the continuous memory array. As illustrated in Fig. 5, for a par-

ticle whose center is (𝑥𝑐, 𝑦𝑐), we only consider whether a fluid node pos-

sesses boundary links for 𝑥-coordinate ranges from 𝐼𝑁𝑇 (𝑥𝑐 − 𝑑𝑝∕2) − 1
to 𝐼𝑁𝑇 (𝑥𝑐 + 𝑑𝑝∕2) +2 and 𝑦-coordinate ranges from 𝐼𝑁𝑇 (𝑦𝑐 − 𝑑𝑝∕2) −1
to 𝐼𝑁𝑇 (𝑦𝑐 + 𝑑𝑝∕2) + 2. Here, 𝐼𝑁𝑇 (𝑑𝑝) is the largest integer not ex-

ceeding the magnitude of 𝑑𝑝. Previous results shown that this bound-

ary link search algorithm is significantly faster than blindly compar-

ing each node to each particle directly [63]. For a discrete veloc-

ity parallel to the grid line (e.g., 𝐞1), there will be 𝑁 lines cross-

ing the effective domain, with vertical coordinates 𝑗 = 1, ⋯ , 𝑁 . Here,
𝑁 = 𝐼𝑁𝑇 (𝑥𝑐 + 𝑑𝑝∕2) − 𝐼𝑁𝑇 (𝑥𝑐 − 𝑑𝑝∕2) + 3 denotes the length of the ef-

fective zone. Each line will have at most one fluid-particle interaction
node pointing in the direction of 𝐞1. For a discrete velocity diagonal to
the grid line (e.g., 𝐞6), there will be 2𝑁 − 3 lines crossing the effective
domain and their coordinates meet the relation of 𝑖 + 𝑗 = 3, 4, ⋯ , 2𝑁 −1.
Similarly, each line will have at most one fluid-particle interaction node

pointing in the direction of 𝐞6. Thus, based on the D2Q9 discrete veloc-

A. Xu and B.-T. Li

Fig. 5. Fixed mapping from solid-fluid grid linkage to continuous memory ar-

rays. The gray area represents the effective zone with a size of 𝑁 × 𝑁 , where
𝑁 = 𝐼𝑁𝑇 (𝑥𝑐 + 𝑑𝑝∕2) − 𝐼𝑁𝑇 (𝑥𝑐 − 𝑑𝑝∕2) + 3.

Table 5

Comparison of running time between direct and indirect address-

ing methods. The iteration steps are fixed as 6000. Data included
in the brackets represent the percentage of time consumption.
Note routines that account for less than 1% of the total time are
neglected.

Fluid-related Particle-related Overall

Direct addressing 41.9 s (52.8%) 37.1 s (46.7%) 79.4 s

Indirect addressing 43.1 s (78.6%) 11.3 s (20.6%) 54.9 s

Speed-up 1X 3.3X 1.4X

ity model, the maximum number of indexes collected across the entire
influence domain is 4 ×𝑁 + 4 × (2𝑁 − 3) = 12𝑁 − 12. Although a few of
these indexes may be unavailable (e.g., the line with 𝑗 = 1 does not in-

tersect with the particle, resulting in two invalid index positions), it is
unlikely to cause severe load imbalance issues.

In Table 5, we compare the running time between direct and indi-

rect addressing methods using the NVIDIA Nsight Systems tool. Here,
we simulate the sedimentation of 4,800 hot particles in cold fluids (see
detailed settings in Section 2.6.3), and the iteration steps are fixed as
6000. The analysis involved summing the time consumed by all fluid-

related computation steps and particle-related computation steps. Note
subroutines that account for less than 1% of the total time are neglected.
The results indicate that, although the indirect addressing method re-

quires an additional step for collecting index information, it reduces the
time consumption for particle-related computation by a factor of 3.3X
compared to the direct addressing method. This leads to an overall im-

provement in code performance by 1.4X. We also adopt the Million
Lattice Update Per Second (MLUPS) as the metric to characterize the
parallel performance of the LB simulation, which is defined as [64]

MLUPS =
mesh size × iteration steps

running time × 106
(18)

We obtain the overall parallel performance of 1209 MLUPS and 1750
MLUPS for the direct and indirect addressing methods, respectively.

4. Implementation and optimization on multi-GPUs

A major limitation in GPU computing is the available device mem-

ory; for example, the state-of-art NVIDIA A100 GPU accelerator offers
a maximum of 40 GB. A solution to the memory limitation is to use
8

multiple GPUs, where the GPUs are distributed across multiple CPU
International Journal of Heat and Mass Transfer 218 (2024) 124758

Fig. 6. Parallel performance in terms of (a) the MLUPS and (b) the parallel effi-

ciency for a naïve implementation using hybrid OpenACC and MPI technique.

nodes, and MPI is used to coordinate the computational tasks. In this
work, we conducted experiments on a GPU cluster where each node
is equipped with four NVIDIA A100 GPUs. The network interconnects
use 100 Gigabits per second (Gbps) Remote direct memory access over
Converged Ethernet (RoCE). The inter-GPU-GPU communication within
a node goes over the PCI-e. To automatically utilize the GPUDirect ac-

celeration technologies, we adopt a CUDA-aware MPI implemented in
OpenMPI. With GPUDirect technology, including Peer to Peer (P2P) and
Remote Direct Memory Access (RDMA), the buffers can be directly sent
from a GPU’s memory to another GPU’s memory or the network without
touching the host memory [65].

4.1. A naïve implementation using hybrid OpenACC and MPI technique

We adopt a mono-dimensional partitioning of the computational
domain and decompose the domain along the 𝑦-direction. To facili-

tate communication between sub-domains, we add three ghost layers
outside the boundary of each subdomain to exchange data with adja-

cent subdomains. In the particle-related calculation, it is essential to
exchange the information of 𝑓+ and 𝑔+ at the boundary nodes after
the collision step. When a particle is close to the boundary of a subdo-

main, the refilling calculation on the new ‘born’ fluid node requires
information from adjunct subdomains to interpolate the distribution
function. After the collision step, each subdomain exchanges the 𝑓+

1−8
at two layers of boundary nodes, and 𝑔+1−4 at the boundary nodes with
their neighbors. After calculating the fluid-particle interaction, the 𝑓0−8
at three layers of boundary nodes is exchanged with their neighbors.
Although the computational domain is decomposed into slices and each
GPU only accesses the fluid nodes of its assigned subdomain, the infor-

mation of all particles is shared among all GPUs. This means that each
particle-related loop requires iteration among all particles, leading to
a loss of computational efficiency. The fluid nodes near the particle
surface exchange momentum with the particles, and we use the MPI
ALLREDUCE to obtain the combined forces on the particle in all sub-

domains.

Fig. 6 shows the parallel performance in terms of the MLUPS and
parallel efficiency. Parallel efficiency is defined as 𝑛 = 𝑇1∕(𝑇𝑛 ⋅ 𝑛). Here,
𝑇1 denotes the running time using a single GPU, and 𝑇𝑛 denotes the run-

ning time using 𝑛 GPUs. We can see that with an increase in the number
of GPUs, the MULPS generally increases. Using 8 GPUs, the simulation
can achieve 5572 MLUPS, indicating a higher computational capacity.
However, the parallel efficiency degrades when more GPUs are used.
Notably, the parallel efficiency is only 39.8% using 8 GPUs, indicat-

ing the parallel code is not scalable. Two reasons may be responsible
for the poor parallel performance. First, the presence of redundant data
exchange, such as the exchange of distribution functions on three lay-

ers of ghost nodes, can increase communication overhead. Secondly,
although the computational domain has been decomposed into slices
and each GPU is only responsible for updating fluid node information
within its subdomain, information on the particle group is required on
every GPU, leading to additional communication overhead. To further
boost the parallel performance using multi-GPUs, we describe some op-
timization strategies in the following subsections.

A. Xu and B.-T. Li

Fig. 7. Schematic illustration to decompose the particle groups and build the
domain list.

4.2. Building the domain list

In the previous subsection, we decomposed the flow field into slices
and assigned each subdomain to one GPU. In this subsection, we further
decompose the particles into subgroups and assign each subgroup to
one GPU. In the particle-resolved LB method, the fluid-particle interac-

tion within a timestep only affects fluid nodes near the particle surface.
Thus, most of the particles in a subdomain do not have to share infor-

mation with other subdomains, except for particles near the subdomain
boundary. As illustrated in Fig. 7, we define an extended subdomain for
a particle group compared to that for the flow field, which includes
three parts: the upper and lower parts with a length of 𝐿 (referred
to as the top halo region and bottom halo region, respectively), and
the central part similar as that of the sliced flow field (referred to as
the exclusive region). Particles whose centers in the halo region share
their information with the neighboring subdomains; while particles in
the exclusive region do not communicate their information with other
subdomains. Here, 𝐿 is determined based on the farthest distance a par-

ticle can interact with the fluid node and another particle. The vertical
length of the particle subdomain extends upward and downward by
𝑑𝑝 + 𝑠, where 𝑑𝑝 denotes the particle diameter and 𝑠 denotes the thresh-

old value for calculating the interparticle interaction force. Thus, the
shared region has a length of 𝐿 = 2(𝑑𝑝 + 𝑠).

After decomposing the particle groups, we assign each subgroup to a
GPU and build domain lists to store the region index of each particle. In
this way, the particle-related calculations do not require iteration over
all particles but only over the particles within the same list, thus re-

ducing the size of the particle search. To synchronize the forces of the
particles, only particles in the top halo region and bottom halo region
need to be shared with the adjacent subdomains. Because the forces
of the particles in the exclusive region do not require synchronization
with other subdomains, we can reduce the size of messages that need
to be sent. If a particle enters the exclusive region from the top (or
bottom) halo region, it will disappear from the subdomain list of the
neighboring subdomains. On the other hand, if a particle enters the top
(or bottom) halo region from the exclusive region, information about
this particle must be sent to the adjacent subdomain and added to their
lists. However, updating the domain list introduces additional compu-

tational costs, which may not be worth it for particles with low-volume
fractions.

Fig. 8 compares the performance of sharing particles’ information
among all GPUs and building the domain list. We can see that building
domain list can improve parallel performance for all the cases. Specif-
9

ically, using 8 GPUs, the simulation can achieve 6796 MLUPS with a
International Journal of Heat and Mass Transfer 218 (2024) 124758

Fig. 8. Performance comparisons between sharing particles’ information among
all GPUs and building domain list in terms of (a) the MLUPS and (b) the parallel
efficiency.

parallel efficiency of 48.5%. It should be noted that the idea of building
domain list was inspired by the cell-linked list in smoothed particle hy-

drodynamics (SPH) simulations [66], where the number of particles can
range from hundreds of thousands to millions, leading to a heavy com-

putational load when searching neighboring particles and calculating
particle interaction forces. To overcome this challenge, the simulation
domain was divided into cells, and neighbor lists were created within
each cell to limit the calculations to the same or adjacent cells. In the
particle-resolved LB method, the particle size is much larger than the
grid size, and the particle number is much smaller than that in SPH.
Thus, it is unnecessary to further divide the subdomain assigned to each
GPU into smaller ones; in other words, we only build one domain list
within a subdomain. As the number of particles increases, the benefits
gained from building domain lists will become more obvious.

4.3. Utilizing request-answer communication

The refilling scheme used to construct unknown distribution func-

tions (as described in subsection 2.5) can result in communication
overhead if node information is required from neighboring subdomains.
Due to the constant change in particle position, it is difficult to pre-

dict in advance which node information needs to be communicated. A
straightforward solution is to exchange all possible information for ex-

trapolation; however, this approach degrades the utilization efficiency
of exchanged data, particularly for particles with a large specific area.
To avoid the passing of excess data, we adopt the request-answer com-

munication method between GPUs, which is similar to the communica-

tion method between CPUs [67]. The basic idea behind this method is
to exchange only distribution functions that are needed for the extrap-

olation, rather than exchanging all distribution functions at boundary
nodes of nearby subdomains. As illustrated in Fig. 9, when the parti-

cle surface moves from the dashed curve to the solid curve, the node
𝐱𝑛𝑒𝑤 changes from a solid node to a fluid node. We assume that the
extrapolation of the density distribution function requires information
on the fluid nodes 𝐱𝑓 , 𝐱𝑓𝑓 , 𝐱𝑓𝑓𝑓 , which are stored in the adjacent sub-

domain. To exchange this information, GPU1 sends a request to GPU0
to exchange the information at fluid nodes 𝐱𝑓 , 𝐱𝑓𝑓 , and 𝐱𝑓𝑓𝑓 . Upon
receiving the request, GPU0 sends the information of distribution func-

tions 𝑓0−8(𝐱𝑓 , 𝛿𝑡), 𝑓0−8(𝐱𝑓𝑓 , 𝛿𝑡), and 𝑓0−8(𝐱𝑓𝑓𝑓 , 𝛿𝑡) to GPU1 in the order
they were requested. In this way, the fluid refilling calculation can be
performed with only two communications. Practically, we pack discon-

tinuous data into contiguous memory, exchange the information using
MPI, and then unpack the synchronized information to the desired lo-

cation. We allocate a sufficiently large array at the receiver to receive
the entire message and use MPI GET COUNT to obtain its length. In
the second communication, the distribution functions should be sent in
the order that corresponds to the requested information, which makes
it easier for the receiver to unpack the information.

Fig. 10 compares the performance of the-above mentioned two ap-

proaches: exchanging all boundary node information and utilizing the
request-answer communication approach. We can see the simulation
can achieve 7746 MLUPS using 8 GPUs with a parallel efficiency of
55.3%. However, with a smaller number of GPUs, the parallel efficiency

does not improve obviously. Upon further analysis of the time consump-

International Journal of Heat and Mass Transfer 218 (2024) 124758A. Xu and B.-T. Li

Fig. 9. Schematic illustration of request-answer communication: (a) sending the request to neighboring GPUs and (b) returning the requested distribution function.
Fig. 10. Performance comparisons between exchanging all boundary node in-

formation and utilizing request-answer communication in terms of (a) the
MLUPS and (b) the parallel efficiency.

tion using the NVIDIA Nsight Systems tool, we find that even though
the request-answer communication approach reduced the amount of
data transfer between GPUs, the total time consumption (including both
communication initiation and data transfer duration) increased. This
increase was likely due to the increased latency on the CPU side, result-

ing from multiple communication initiations and calls to the MPI GET
COUNT function. When dealing with 8 or more GPUs, inter-GPU com-

munication encounters limitations within the PCI-e interface, leading
to a decrease in data transfer speeds and an increase in data transfer
duration. This is the scenario where the request-answer communica-

tion approach enhances parallel performance and overall efficiency. In
the 2D simulation, due to low communication overhead, the increased
latency on the CPU side outweighs the benefit of reduced communica-

tions between GPUs. For this reason, we do not use the request-answer
approach to optimize the interpolation of the distribution function at
the curved surface of the particle, as the additional communication
load from the low percentage of invalid information was acceptable for
high-volume fractions of particles. We deduce that in three-dimensional
simulations when the overhead between GPU communications is more
intense, the use of a request-answer communication approach would be
more effective.

4.4. Overlapping communications with computations

Previous studies have demonstrated that hiding communication
overhead behind the kernel runtime can increase the parallel perfor-

mance by a factor of around 1.3X for LB simulation of single-phase flow
[28,68,69]. In Fig. 11, we further illustrate the overlap of communi-

cations with computations for LB simulation of particle-laden thermal
flows. Specifically, we first carry out the collision step to update the
density distribution function (𝑓) and temperature distribution function
(𝑔) at boundary nodes, followed by building domain lists in each sub-

domain. If a particle in a subdomain transition from an exclusive state
to a shared state, namely it moves from the exclusive region to a top
(or bottom) halo region, we use MPI communications to synchronize
the particles’ information, including the position (𝐫), the velocity (𝐔),
the orientation angle (𝜃), and the angular velocity (Ω𝑧). The synchro-

nization of the particle’s information can be overlapped with updating
10

the temperature distribution function (𝑔) at inner nodes. After that,
we collect the particle-fluid grid linkage and carry the collision step
to update the density distribution function (𝑓) at inner nodes; mean-

while, we synchronize the post-collision density distribution function
𝑓+ to hide the kernel runtime. Similarly, the synchronization of post-

collision temperature distribution function 𝑔+ can be overlapped with
the streaming of density distribution function (𝑓). After the streaming
of the temperature distribution function (𝑔) and the calculation of fluid-

particle interactions, the particles in the top (or bottom) halo region of
the subdomain lists need to exchange the information of fluid-particle
interaction force (𝐅) and torque (𝑇𝑧) with the neighboring subdomains,
which can be overlapped with the computation of macroscopic tem-

perature (𝑇). Before the fluid refilling calculation, we synchronize the
density distribution function (𝑓) using the request-answer communi-

cation approach, which can be overlapped with the computation of
macroscopic velocity (𝐮) and density (𝜌).

Fig. 12 compares the performance between non-overlapping and
overlapping communication. We can see that the MLUPS and paral-

lel efficiency improved for all the cases when the communications and
computations overlapped, and the advantage of using the overlapping
mode becomes more pronounced with an increase in the number of
GPUs. Notably, the performance increases by 1.22X when using 8 GPUs
(i.e., increase from 7746 MLUPS to 9466 MLUPS, and a parallel effi-

ciency from 55.3% to 67.6%), which shows similar gains to that for
LB simulation of single-phase flow, suggesting that hiding communica-

tion overhead behind the kernel runtime is an effective approach for
optimizing LB simulations on multi-GPUs [28,68,69].

4.5. Executing computation tasks concurrently

In the heterogeneous CPU-GPU architecture, the CPU acts as the con-

troller, which offloads data and computational tasks to the GPU, and
retrieves the results when the computation is complete, as illustrated in
Fig. 13(a). This non-concurrent computation can lead to performance
bottlenecks if the CPU is unable to keep up with the demands of the
GPU. A solution is to take advantage of the parallel processing power
of the GPU and execute computation tasks concurrently. In the Ope-

nACC, task parallelism can be achieved via the !$acc async(n) handle
to concurrently execute independent tasks on a single GPU. As illus-

trated in Fig. 13(b), each task is processed by a separate stream of GPU
commands, and the concurrent execution of computation tasks reduces
synchronization between CPU and GPU. By processing multiple tasks in
parallel, the GPU can be kept busy, and utilization can be maximized.

Fig. 14 compares the performance between non-concurrent and con-

current computation. We can see that the MLUPS and parallel efficiency
slightly improved for all the cases if the computations are executed
concurrently. With 8 GPUs, the simulation achieved 10846 MLUPS,
yielding a parallel efficiency of 77.5%. We further analyzed the run-

time of concurrent computation using the NVIDIA Nsight Systems tool
and found that each GPU has three distinct work queues that simulta-
neously execute the computational tasks.

International Journal of Heat and Mass Transfer 218 (2024) 124758A. Xu and B.-T. Li

Fig. 11. Schematic illustration of overlapping communications with computations for LB simulation of particle-laden thermal flows. The purple rectangular represents
particle-related computations.
Fig. 12. Performance comparisons between non-overlapping and overlapping
communication with computation in terms of (a) the MLUPS and (b) the parallel
efficiency.

5. Conclusions

In this work, we have utilized OpenACC-based GPU computing
to perform particle-resolved thermal LB simulations, in which the
momentum-exchange method was adopted to calculate particle-fluid
interactions. We extended the indirect addressing method to collect
fluid-particle link information at each timestep and store indices of
fluid-particle links in a fixed index array. This mapping of the index ar-

ray helps solve the issue of load imbalance by ensuring fluid-particle
interactions are only calculated at indexed positions. Using this ap-

proach, the simulation of 4,800 hot particles settling in cold fluids with
a domain size of 40002 achieved 1750 MLUPS on a single GPU.

We also implemented a hybrid approach combining OpenACC and
MPI for multi-GPU accelerated simulation. This approach incorporates
four optimization strategies to enhance parallel performance. First, we
build the domain list and optimize the fluid-particle interactions by
considering only those within the same domain or adjacent domains,
thereby avoiding the need to loop over all particles. Next, we utilize
request-answer communication and exchange only the necessary distri-

bution functions, rather than exchanging information for all boundary
nodes. To further improve performance, we overlap communications
with computations. This allows us to hide communication latency be-

hind the consumed computational time, resulting in significant gains
for multi-GPU simulations. Additionally, we maximize the utilization of
GPU resources by executing computational tasks concurrently, enhanc-

ing parallel efficiency by ensuring efficient use of available processing
power. Overall, using 8 GPUs, these optimizations lead to a parallel
performance increase from 5572 MLUPS to 10846 MLUPS, with a cor-

responding improvement in parallel efficiency from 39.8% to 77.5%.
To ensure the correctness of the code utilizing the hybrid OpenACC
and MPI approach, we recommend an incremental approach utilize the
11

above four optimization strategies to accelerate the code.
In the future, we plan to extend these optimization strategies to
three-dimensional particle-resolved thermal flows, where the computa-

tional load is intense and the overhead to lunch the kernel is relatively
lower. In the three-dimension simulation, to reduce memory require-

ments, the distribution function can be reconstructed from available
hydrodynamic variables instead of storing the full set of discrete popu-

lations [70].

CRediT authorship contribution statement

Ao Xu: Conceptualization, Formal analysis, Funding acquisition,
Project administration, Resources, Software, Supervision, Writing –
original draft, Writing – review & editing. Bo-Tao Li: Data curation, For-

mal analysis, Investigation, Software, Validation, Visualization, Writing
– original draft.

Declaration of competing interest

We confirm that the manuscript has been read and approved by all
named authors and that there are no other persons who satisfied the
criteria for authorship but are not listed. We further confirm that the
order of authors listed in the manuscript has been approved by all of
us.

Data availability

Data will be made available on request.

Acknowledgements

This work was supported by the National Natural Science Founda-

tion of China (NSFC) through Grant Nos. 12272311 and 11902268, and
the Open Fund of Key Laboratory of Icing and Anti/De-icing (Grant No.
IADL20200301). The authors acknowledge the Beijing Beilong Super
Cloud Computing Co., Ltd for providing HPC resources that have con-

tributed to the research results reported within this paper (URL: http://

www .blsc .cn/).

Appendix A. An elliptical cold particle settling in hot fluids

We compare the trajectory and orientation of a single elliptical cold
particle settling in hot fluids using both the multi-GPU code and the

corresponding CPU code. The contour of the temperature field during

http://www.blsc.cn/
http://www.blsc.cn/

International Journal of Heat and Mass Transfer 218 (2024) 124758A. Xu and B.-T. Li

Fig. 13. Schematic illustration of (a) non-concurrent and (b) concurrent execution of computational tasks on a single GPU.
Fig. 14. Performance comparisons between non-concurrent and concurrent
computation in terms of (a) the MLUPS and (b) the parallel efficiency.

Fig. 15. Contour of dimensionless temperature field 𝑇 ∗ = (𝑇 −𝑇𝑐)∕Δ𝑇 during the
sedimentation of an elliptical cold particle in a hot fluid at the dimensionless
time 𝑡∗ = 𝑡𝜈∕𝐴2 of (a) 6.875, (b) 7.5, (c) 8.125, (d) 8.75, (e) 9.375. Note that only
heights between 1.875 cm and 3.875 cm are shown for better visualization.

the sedimentation is shown in Fig. 15. The simulation setting is simi-

lar to our previous work [55]. However, instead of using the moving
domain technique to mimic an infinitely long channel, we now adopt
an alternative approach of utilizing a closed cavity with a very small
width-to-height aspect ratio [17] to minimize the end effect of top and
bottom boundaries. Specifically, the size of the cavity is 𝑊 × 𝐻 = 0.4
cm × 8 cm, and all four walls of the cavity are imposed no-slip velocity
boundary conditions.

In the simulation, each particle has a density of 𝜌𝑝 = 1.001 g/cm3,
a major axis of 𝐴 = 1 mm, and a minor axis of 𝐵 = 0.5 mm. The
particle is released at (0.5𝑊 , 0.75𝐻) with an initial angle of 60◦ be-
12

tween the particle’s major axis and the horizontal direction. To mimic
Fig. 16. Time series of (a, b) horizontal and vertical positions of the particle
center, and (b, c) the angle 𝜃 between the particle major axis and the horizontal
direction in terms of cos𝜃 and sin𝜃, respectively.

the working fluid of water, we set its viscosity as 𝜈𝑓 = 10−6 m2/s and its
density as 𝜌𝑓 = 1 g/cm3. In this case, we have 𝑅𝑒𝑝 = 𝑈𝑟𝑒𝑓 𝑑𝑝∕𝜈𝑓 = 3.92

and 𝐴𝑟 =
√

𝑔𝐴3(𝜌𝑝 − 𝜌𝑓)∕(𝜈2𝑓 𝜌𝑓) = 3.13. Meanwhile, we choose 𝐺𝑟𝑝 =

𝑔𝛽𝑇Δ𝑇 𝐴3∕𝜈2
𝑓
= 200 and 𝑃𝑟 = 7. From Fig. 16, we can see that the simu-

lation using the moving domain technique [55] gives the same results
as that adopting a sufficiently large domain; in addition, the multi-GPU
simulation provides the same results to those obtained from the CPU-

based simulation.

Appendix B. Two circular hot particles settling in cold fluids

We conduct a comparison between the velocity and position of two
circular hot particles settling in cold fluids to validate the particle-

particle interactions, and the contour of the temperature field during
the sedimentation is shown in Fig. 17. The simulation setting is simi-

lar to the one used in Tao et al. [60], known as draft-kissing-tumbling
(DKT) with convection. Specifically, the size of the cavity is 𝑊 × 𝐻

= 2 cm × 6 cm, and all four walls of the cavity are imposed no-

slip velocity boundary conditions. Each particle has a density of 𝜌𝑝

= 1.01 g/cm3 and a diameter of 𝑑𝑝 = 2 mm. The lower particle is
released at (0.5𝑊 − 0.005𝑑𝑝, 0.8𝐻) and the upper particle is released
at (0.5𝑊 , 0.8𝐻 + 2𝑑𝑝). The lower particle was deliberately offset from
channel centerline to induce tumbling, because previous calculations
showed that otherwise both particles remained perfectly aligned for a
long time after catching up, and the offset prevents prolonged stable

alignment.

International Journal of Heat and Mass Transfer 218 (2024) 124758A. Xu and B.-T. Li

Table 6

Simulation parameters for the sedimentation of two circular hot particles in cold fluids. The length unit
conversion is 𝑙∗ = 5 ×10−5 m/l.u., the time unit conversion is 𝑡∗ = 2.5 ×10−5 s/t.s., and the temperature
unit conversion is 𝑇∗ = 6.07 K/t.u.

Physical system LB system Unit conversion

Domain size 𝑊 ×𝐻 = 2 cm × 6 cm 𝑊 ×𝐻 = 400 l.u. × 1200 l.u. 𝐱 = 𝐱 ⋅ 𝑙
∗
Particle diameter 𝑑𝑝 = 2 mm 𝑑𝑝 = 40 l.u. 𝑑𝑝 = 𝑑𝑝 ⋅ 𝑙∗
Kinematic viscosity 𝜈𝑓 = 10−6 m2/s 𝜈𝑓 = 0.01 l.u.2/t.s. 𝜈𝑓 = 𝜈𝑓 ⋅ 𝑙2∗∕𝑡∗
Thermal diffusivity 𝛼𝑇 = 10−6 m2/s 𝛼𝑇 = 0.01 l.u.2/t.s. 𝛼𝑇 = 𝛼𝑇 ⋅ 𝑙2∗∕𝑡∗
Gravity acceleration 𝑔 = 9.8 m/s2 𝑔 = 1.23 × 10−4 l.u./t.s.2 𝑔 = 𝑔 ⋅ 𝑙∗∕𝑡2∗
Thermal expansion coefficient 𝛽 = 2.1 × 10−4 K−1 𝛽 = 1.28 × 10−3 t.u.−1 𝛽 = 𝛽∕𝑇∗
Temperature difference Δ𝑇 = 6.07 K Δ𝑇 = 1 t.u. Δ𝑇 =Δ𝑇 ⋅ 𝑇∗

Fig. 17. Contour of dimensionless temperature field 𝑇 ∗ = (𝑇 − 𝑇𝑐)∕Δ𝑇 during
the sedimentation of two circular hot particles settling in cold fluids at the
dimensionless time 𝑡∗ = 𝑡∕

√
𝑑𝑝∕𝑔 of (a) 0, (b) 70, (c) 140, (d) 280.

Fig. 18. Time series of (a, b) velocity and (c, d) position of the two circular
hot particles settling in cold fluids. The time is normalized as 𝑡∗ = 𝑡∕

√
𝑑𝑝∕𝑔,

the velocity is normalized as 𝐮∗ = 𝐮∕
√

𝑔𝑑𝑝 , and the position is normalized as
𝐱∗ = 𝐱∕𝑑𝑝 . Here, “P1” denotes the upper particle, and “P2” denotes the lower
particle. Data shown in (b) are from Tao et al. [60], while data shown in (a,c,d)

We set the viscosity of the fluid as 𝜈𝑓 = 10−6 m2/s and its den-

sity as 𝜌𝑓 = 1 g/cm3. In this case, we have 𝑅𝑒𝑝 = 𝑈𝑟𝑒𝑓 𝑑𝑝∕𝜈𝑓 =√
𝑔𝜋𝑑𝑝(𝜌𝑝 − 𝜌𝑓)∕(2𝜌𝑓) = 35.09 and 𝐴𝑟 =

√
𝑔𝑑3

𝑝
(𝜌𝑝 − 𝜌𝑓)∕(𝜈2𝑓 𝜌𝑓) = 28.0.

Meanwhile, we choose 𝐺𝑟𝑝 = 𝑔𝛽𝑇Δ𝑇 𝐴3∕𝜈2
𝑓
= 100 and 𝑃𝑟 = 1. A detailed

setting for simulation parameters is listed in Table 6. From Fig. 18, we
can see that the present results show good agreement with Tao et al.
[60] using a sharp interface immersed boundary-discrete unified gas ki-

netic scheme (IB-DUGKS), thus validating the code’s ability to simulate
particle-particle interactions.

References

[1] V. Mathai, D. Lohse, C. Sun, Bubbly and buoyant particle–laden turbulent flows,
Annu. Rev. Condens. Matter Phys. 11 (2020) 529–559.

[2] L. Brandt, F. Coletti, Particle-laden turbulence: progress and perspectives, Annu.
Rev. Fluid Mech. 54 (2022) 159–189.

[3] P. Wang, Y. Lei, Z. Zhu, X. Zheng, Drag model of finite-sized particle in turbulent
wall-bound flow over sediment bed, J. Fluid Mech. 964 (2023), A9.

[4] D. Norbäck, C. Lu, Y. Zhang, B. Li, Z. Zhao, C. Huang, X. Zhang, H. Qian, Y. Sun,
J. Wang, et al., Sources of indoor particulate matter (PM) and outdoor air pollution
in China in relation to asthma, wheeze, rhinitis and eczema among pre-school chil-

dren: synergistic effects between antibiotics use and PM10 and second hand smoke,
Environ. Int. 125 (2019) 252–260.

[5] M. Maxey, Simulation methods for particulate flows and concentrated suspensions,
Annu. Rev. Fluid Mech. 49 (2017) 171–193.

[6] V. Patočka, E. Calzavarini, N. Tosi, Settling of inertial particles in turbulent
Rayleigh-Bénard convection, Phys. Rev. Fluids 5 (11) (2020) 114304.

[7] V. Patočka, N. Tosi, E. Calzavarini, Residence time of inertial particles in 3D thermal
convection: implications for magma reservoirs, Earth Planet. Sci. Lett. 591 (2022)
117622.

[8] W. Yang, Y.-Z. Zhang, B.-F. Wang, Y. Dong, Q. Zhou, Dynamic coupling between
carrier and dispersed phases in Rayleigh–Bénard convection laden with inertial
isothermal particles, J. Fluid Mech. 930 (2022) A24.

[9] W. Yang, Z.-H. Wan, Q. Zhou, Y. Dong, On the energy transport and heat transfer
efficiency in radiatively heated particle-laden Rayleigh–Bénard convection, J. Fluid
Mech. 953 (2022) A35.

[10] H.H. Hu, N.A. Patankar, M. Zhu, Direct numerical simulations of fluid–solid systems
using the arbitrary Lagrangian–Eulerian technique, J. Comput. Phys. 169 (2) (2001)
427–462.

[11] C.S. Peskin, The immersed boundary method, Acta Numer. 11 (2002) 479–517.

[12] R. Glowinski, T.-W. Pan, T.I. Hesla, D.D. Joseph, J. Periaux, A fictitious domain
approach to the direct numerical simulation of incompressible viscous flow past
moving rigid bodies: application to particulate flow, J. Comput. Phys. 169 (2) (2001)
363–426.

[13] Z. Yu, X. Shao, A. Wachs, A fictitious domain method for particulate flows with heat
transfer, J. Comput. Phys. 217 (2) (2006) 424–452.

[14] C.K. Aidun, J.R. Clausen, Lattice-Boltzmann method for complex flows, Annu. Rev.
Fluid Mech. 42 (2010) 439–472.

[15] S. Tao, H. Zhang, Z. Guo, L.-P. Wang, A combined immersed boundary and discrete
unified gas kinetic scheme for particle–fluid flows, J. Comput. Phys. 375 (2018)
498–518.

[16] K. Walayat, Z. Wang, K. Usman, M. Liu, An efficient multi-grid finite element ficti-

tious boundary method for particulate flows with thermal convection, Int. J. Heat
Mass Transf. 126 (2018) 452–465.

[17] K. Suzuki, T. Kawasaki, T. Asaoka, M. Yoshino, Numerical simulations of solid–

liquid and solid–solid interactions in ice slurry flows by the thermal immersed
boundary–lattice Boltzmann method, Int. J. Heat Mass Transf. 157 (2020) 119944.

[18] A.D. Demou, M.N. Ardekani, P. Mirbod, L. Brandt, Turbulent Rayleigh–Bénard con-

vection in non-colloidal suspensions, J. Fluid Mech. 945 (2022) A6.

[19] M.J. Krause, A. Kummerländer, S.J. Avis, H. Kusumaatmaja, D. Dapelo, F. Klemens,
M. Gaedtke, N. Hafen, A. Mink, R. Trunk, et al., OpenLB—open source lattice Boltz-
13

are from private communication with S. Tao.
 mann code, Comput. Math. Appl. 81 (2021) 258–288.

http://refhub.elsevier.com/S0017-9310(23)00903-1/bib76E699345E09E4C2EC36E2CA7E07701Es1
http://refhub.elsevier.com/S0017-9310(23)00903-1/bib76E699345E09E4C2EC36E2CA7E07701Es1
http://refhub.elsevier.com/S0017-9310(23)00903-1/bib0F065CF9CFC816C90E97A690592915CFs1
http://refhub.elsevier.com/S0017-9310(23)00903-1/bib0F065CF9CFC816C90E97A690592915CFs1
http://refhub.elsevier.com/S0017-9310(23)00903-1/bib2F721C96A1EEC03464F13DEC8DDD80ABs1
http://refhub.elsevier.com/S0017-9310(23)00903-1/bib2F721C96A1EEC03464F13DEC8DDD80ABs1
http://refhub.elsevier.com/S0017-9310(23)00903-1/bib330FF6B94135B6F4CDB70EA71CF47F52s1
http://refhub.elsevier.com/S0017-9310(23)00903-1/bib330FF6B94135B6F4CDB70EA71CF47F52s1
http://refhub.elsevier.com/S0017-9310(23)00903-1/bib330FF6B94135B6F4CDB70EA71CF47F52s1
http://refhub.elsevier.com/S0017-9310(23)00903-1/bib330FF6B94135B6F4CDB70EA71CF47F52s1
http://refhub.elsevier.com/S0017-9310(23)00903-1/bib330FF6B94135B6F4CDB70EA71CF47F52s1
http://refhub.elsevier.com/S0017-9310(23)00903-1/bib6CB2FDF3512F132FD9FF9C9AB39A8185s1
http://refhub.elsevier.com/S0017-9310(23)00903-1/bib6CB2FDF3512F132FD9FF9C9AB39A8185s1
http://refhub.elsevier.com/S0017-9310(23)00903-1/bibFCEC6C6A0C6BDE8502BA01C941194B21s1
http://refhub.elsevier.com/S0017-9310(23)00903-1/bibFCEC6C6A0C6BDE8502BA01C941194B21s1
http://refhub.elsevier.com/S0017-9310(23)00903-1/bib30DC8895DD2114F8B79647104F8E290Ds1
http://refhub.elsevier.com/S0017-9310(23)00903-1/bib30DC8895DD2114F8B79647104F8E290Ds1
http://refhub.elsevier.com/S0017-9310(23)00903-1/bib30DC8895DD2114F8B79647104F8E290Ds1
http://refhub.elsevier.com/S0017-9310(23)00903-1/bib9956B0E70F1A493A0E4CC44519344EC2s1
http://refhub.elsevier.com/S0017-9310(23)00903-1/bib9956B0E70F1A493A0E4CC44519344EC2s1
http://refhub.elsevier.com/S0017-9310(23)00903-1/bib9956B0E70F1A493A0E4CC44519344EC2s1
http://refhub.elsevier.com/S0017-9310(23)00903-1/bib159FFDEC91E5A6B249FF13258CC2B196s1
http://refhub.elsevier.com/S0017-9310(23)00903-1/bib159FFDEC91E5A6B249FF13258CC2B196s1
http://refhub.elsevier.com/S0017-9310(23)00903-1/bib159FFDEC91E5A6B249FF13258CC2B196s1
http://refhub.elsevier.com/S0017-9310(23)00903-1/bib056A545A81D5DB9D4F3A08E2589312B9s1
http://refhub.elsevier.com/S0017-9310(23)00903-1/bib056A545A81D5DB9D4F3A08E2589312B9s1
http://refhub.elsevier.com/S0017-9310(23)00903-1/bib056A545A81D5DB9D4F3A08E2589312B9s1
http://refhub.elsevier.com/S0017-9310(23)00903-1/bib35D4BF3C0BA143F913CE00B659613EA3s1
http://refhub.elsevier.com/S0017-9310(23)00903-1/bib3E6A0110618DD065033B87F075A60605s1
http://refhub.elsevier.com/S0017-9310(23)00903-1/bib3E6A0110618DD065033B87F075A60605s1
http://refhub.elsevier.com/S0017-9310(23)00903-1/bib3E6A0110618DD065033B87F075A60605s1
http://refhub.elsevier.com/S0017-9310(23)00903-1/bib3E6A0110618DD065033B87F075A60605s1
http://refhub.elsevier.com/S0017-9310(23)00903-1/bib6AF2719A8D2F122183DB32F6CC4C8017s1
http://refhub.elsevier.com/S0017-9310(23)00903-1/bib6AF2719A8D2F122183DB32F6CC4C8017s1
http://refhub.elsevier.com/S0017-9310(23)00903-1/bib1E4C4264B3092BCBB0179AD781834A90s1
http://refhub.elsevier.com/S0017-9310(23)00903-1/bib1E4C4264B3092BCBB0179AD781834A90s1
http://refhub.elsevier.com/S0017-9310(23)00903-1/bib327F4146F43D7A99AD43DDA0800D24B4s1
http://refhub.elsevier.com/S0017-9310(23)00903-1/bib327F4146F43D7A99AD43DDA0800D24B4s1
http://refhub.elsevier.com/S0017-9310(23)00903-1/bib327F4146F43D7A99AD43DDA0800D24B4s1
http://refhub.elsevier.com/S0017-9310(23)00903-1/bib693BF285E23E282FA5E6BFEDAC07C476s1
http://refhub.elsevier.com/S0017-9310(23)00903-1/bib693BF285E23E282FA5E6BFEDAC07C476s1
http://refhub.elsevier.com/S0017-9310(23)00903-1/bib693BF285E23E282FA5E6BFEDAC07C476s1
http://refhub.elsevier.com/S0017-9310(23)00903-1/bib03EB4E79366C07D1E50E5B0D81ED6B4As1
http://refhub.elsevier.com/S0017-9310(23)00903-1/bib03EB4E79366C07D1E50E5B0D81ED6B4As1
http://refhub.elsevier.com/S0017-9310(23)00903-1/bib03EB4E79366C07D1E50E5B0D81ED6B4As1
http://refhub.elsevier.com/S0017-9310(23)00903-1/bib95ECC333B88ABAEFAA7E46A0391AC345s1
http://refhub.elsevier.com/S0017-9310(23)00903-1/bib95ECC333B88ABAEFAA7E46A0391AC345s1
http://refhub.elsevier.com/S0017-9310(23)00903-1/bib7E845CD96346B56FA18E0423A7EB6FB6s1
http://refhub.elsevier.com/S0017-9310(23)00903-1/bib7E845CD96346B56FA18E0423A7EB6FB6s1
http://refhub.elsevier.com/S0017-9310(23)00903-1/bib7E845CD96346B56FA18E0423A7EB6FB6s1

International Journal of Heat and Mass Transfer 218 (2024) 124758A. Xu and B.-T. Li

[20] J. Latt, O. Malaspinas, D. Kontaxakis, A. Parmigiani, D. Lagrava, F. Brogi, M.B.
Belgacem, Y. Thorimbert, S. Leclaire, S. Li, et al., Palabos: parallel lattice Boltzmann
solver, Comput. Math. Appl. 81 (2021) 334–350.

[21] M. Januszewski, M. Kostur, Sailfish: a flexible multi-GPU implementation of the
lattice Boltzmann method, Comput. Phys. Commun. 185 (9) (2014) 2350–2368.

[22] G. Amati, S. Succi, P. Fanelli, V.K. Krastev, G. Falcucci, Projecting LBM perfor-

mance on exascale class architectures: a tentative outlook, J. Comput. Sci. 55 (2021)
101447.

[23] Z. Liu, X. Chu, X. Lv, H. Meng, S. Shi, W. Han, J. Xu, H. Fu, G. Yang, Sunwaylb:
enabling extreme-scale lattice boltzmann method based computing fluid dynamics
simulations on sunway taihulight, in: 2019 IEEE International Parallel and Dis-

tributed Processing Symposium (IPDPS), IEEE, 2019, pp. 557–566.

[24] G. Falcucci, G. Amati, P. Fanelli, V.K. Krastev, G. Polverino, M. Porfiri, S. Succi,
Extreme flow simulations reveal skeletal adaptations of deep-sea sponges, Nature
595 (7868) (2021) 537–541.

[25] O. Navarro-Hinojosa, S. Ruiz-Loza, M. Alencastre-Miranda, Physically based visual
simulation of the Lattice Boltzmann method on the GPU: a survey, J. Supercomput.
74 (2018) 3441–3467.

[26] K.E. Niemeyer, C.-J. Sung, Recent progress and challenges in exploiting graphics
processors in computational fluid dynamics, J. Supercomput. 67 (2014) 528–564.

[27] A. Xu, L. Shi, T. Zhao, Accelerated lattice Boltzmann simulation using GPU and
OpenACC with data management, Int. J. Heat Mass Transf. 109 (2017) 577–588.

[28] A. Xu, B.-T. Li, Multi-GPU thermal lattice Boltzmann simulations using OpenACC
and MPI, Int. J. Heat Mass Transf. 201 (2023) 123649.

[29] E. Calore, J. Kraus, S.F. Schifano, R. Tripiccione, Accelerating lattice boltzmann
applications with OpenACC, in: Euro-Par 2015: Parallel Processing, Springer, 2015,
pp. 613–624.

[30] S. Blair, C. Albing, A. Grund, A. Jocksch, Accelerating an MPI lattice Boltzmann
code using OpenACC, in: Proceedings of the Second Workshop on Accelerator Pro-

gramming Using Directives, 2015, pp. 1–9.

[31] E. Calore, A. Gabbana, J. Kraus, S.F. Schifano, R. Tripiccione, Performance and
portability of accelerated lattice Boltzmann applications with OpenACC, Concurr.
Comput., Pract. Exp. 28 (12) (2016) 3485–3502.

[32] Q. Xiong, B. Li, G. Zhou, X. Fang, J. Xu, J. Wang, X. He, X. Wang, L. Wang, W. Ge,
et al., Large-scale DNS of gas–solid flows on Mole-8.5, Chem. Eng. Sci. 71 (2012)
422–430.

[33] K. Ma, M. Jiang, Z. Liu, Accelerating fully resolved simulation of particle-laden flows
on heterogeneous computer architectures, Particuology 81 (2023) 25–37.

[34] A.J. Ladd, Numerical simulations of particulate suspensions via a discretized Boltz-

mann equation. Part 1. Theoretical foundation, J. Fluid Mech. 271 (1994) 285–309.

[35] Y. Chen, Q. Cai, Z. Xia, M. Wang, S. Chen, Momentum-exchange method in lat-

tice Boltzmann simulations of particle-fluid interactions, Phys. Rev. E 88 (1) (2013)
013303.

[36] B. Wen, C. Zhang, Y. Tu, C. Wang, H. Fang, Galilean invariant fluid–solid interfacial
dynamics in lattice Boltzmann simulations, J. Comput. Phys. 266 (2014) 161–170.

[37] H. Yoshida, M. Nagaoka, Multiple-relaxation-time lattice Boltzmann model for the
convection and anisotropic diffusion equation, J. Comput. Phys. 229 (20) (2010)
7774–7795.

[38] Z. Chai, T. Zhao, Lattice Boltzmann model for the convection-diffusion equation,
Phys. Rev. E 87 (6) (2013) 063309.

[39] J. Wang, D. Wang, P. Lallemand, L.-S. Luo, Lattice Boltzmann simulations of thermal
convective flows in two dimensions, Comput. Math. Appl. 65 (2) (2013) 262–286.

[40] D. Contrino, P. Lallemand, P. Asinari, L.-S. Luo, Lattice-Boltzmann simulations of
the thermally driven 2D square cavity at high Rayleigh numbers, J. Comput. Phys.
275 (2014) 257–272.

[41] A. Xu, L. Shi, H.-D. Xi, Lattice Boltzmann simulations of three-dimensional thermal
convective flows at high Rayleigh number, Int. J. Heat Mass Transf. 140 (2019)
359–370.

[42] A. Xu, X. Chen, H.-D. Xi, Tristable flow states and reversal of the large-scale cir-

culation in two-dimensional circular convection cells, J. Fluid Mech. 910 (2021)
A33.

[43] A. Xu, B.-R. Xu, H.-D. Xi, Wall-sheared thermal convection: heat transfer enhance-

ment and turbulence relaminarization, J. Fluid Mech. 960 (2023) A2.

[44] M. Bouzidi, M. Firdaouss, P. Lallemand, Momentum transfer of a Boltzmann-lattice
fluid with boundaries, Phys. Fluids 13 (11) (2001) 3452–3459.

[45] W. Zhao, W.-A. Yong, Single-node second-order boundary schemes for the lattice
Boltzmann method, J. Comput. Phys. 329 (2017) 1–15.

[46] S. Tao, Q. He, B. Chen, X. Yang, S. Huang, One-point second-order curved boundary
condition for lattice Boltzmann simulation of suspended particles, Comput. Math.
Appl. 76 (7) (2018) 1593–1607.

[47] L. Li, R. Mei, J.F. Klausner, Boundary conditions for thermal lattice Boltzmann equa-

tion method, J. Comput. Phys. 237 (2013) 366–395.

[48] L. Li, R. Mei, J.F. Klausner, Lattice Boltzmann models for the convection-diffusion
equation: D2Q5 vs D2Q9, Int. J. Heat Mass Transf. 108 (2017) 41–62.

[49] J.R. Clausen, C.K. Aidun, Galilean invariance in the lattice-Boltzmann method and
its effect on the calculation of rheological properties in suspensions, Int. J. Multiph.
Flow 35 (4) (2009) 307–311.

[50] Z.-G. Feng, E.E. Michaelides, The immersed boundary-lattice Boltzmann method
for solving fluid–particles interaction problems, J. Comput. Phys. 195 (2) (2004)
602–628.

[51] H. Huang, M. Sukop, X. Lu, Multiphase Lattice Boltzmann Methods: Theory and
Application, John Wiley & Sons, 2015.

[52] P. Lallemand, L.-S. Luo, Lattice Boltzmann method for moving boundaries, J. Com-

put. Phys. 184 (2) (2003) 406–421.

[53] C. Peng, Y. Teng, B. Hwang, Z. Guo, L.-P. Wang, Implementation issues and bench-

marking of lattice Boltzmann method for moving rigid particle simulations in a
viscous flow, Comput. Math. Appl. 72 (2) (2016) 349–374.

[54] T. Rosemann, B. Kravets, S. Reinecke, H. Kruggel-Emden, M. Wu, B. Peters, Com-

parison of numerical schemes for 3D lattice Boltzmann simulations of moving rigid
particles in thermal fluid flows, Powder Technol. 356 (2019) 528–546.

[55] A. Xu, L. Shi, T. Zhao, Thermal effects on the sedimentation behavior of elliptical
particles, Int. J. Heat Mass Transf. 126 (2018) 753–764.

[56] K. Walayat, Z. Zhang, K. Usman, J. Chang, M. Liu, Dynamics of elliptic particle
sedimentation with thermal convection, Phys. Fluids 30 (10) (2018) 103301.

[57] Z. Yu, N. Phan-Thien, Y. Fan, R.I. Tanner, Viscoelastic mobility problem of a system
of particles, J. Non-Newton. Fluid Mech. 104 (2–3) (2002) 87–124.

[58] D. Wan, S. Turek, Direct numerical simulation of particulate flow via multigrid FEM
techniques and the fictitious boundary method, Int. J. Numer. Methods Fluids 51 (5)
(2006) 531–566.

[59] Z.-G. Feng, E.E. Michaelides, Inclusion of heat transfer computations for particle
laden flows, Phys. Fluids 20 (4) (2008) 040604.

[60] S. Tao, L. Wang, Q. He, J. Chen, J. Luo, A sharp interface immersed boundary-

discrete unified gas kinetic scheme for fluid-solid flows with heat transfer, Int.
Commun. Heat Mass Transf. 139 (2022) 106424.

[61] C. Pan, J.F. Prins, C.T. Miller, A high-performance lattice Boltzmann implementation
to model flow in porous media, Comput. Phys. Commun. 158 (2) (2004) 89–105.

[62] C. Huang, B. Shi, Z. Guo, Z. Chai, Multi-GPU based lattice Boltzmann method for
hemodynamic simulation in patient-specific cerebral aneurysm, Commun. Comput.
Phys. 17 (4) (2015) 960–974.

[63] H. Gao, H. Li, L.-P. Wang, Lattice Boltzmann simulation of turbulent flow laden with
finite-size particles, Comput. Math. Appl. 65 (2) (2013) 194–210.

[64] P. Bailey, J. Myre, S.D. Walsh, D.J. Lilja, M.O. Saar, Accelerating lattice Boltzmann
fluid flow simulations using graphics processors, in: 2009 International Conference
on Parallel Processing, IEEE, 2009, pp. 550–557.

[65] C.-C. Ye, P.-J.-Y. Zhang, Z.-H. Wan, R. Yan, D.-J. Sun, Accelerating CFD simulation
with high order finite difference method on curvilinear coordinates for modern GPU
clusters, Adv. Aerodyn. 4 (1) (2022) 7.

[66] J. Domínguez, A. Crespo, M. Gómez-Gesteira, J. Marongiu, Neighbour lists in
smoothed particle hydrodynamics, Int. J. Numer. Methods Fluids 67 (12) (2011)
2026–2042.

[67] N. Geneva, C. Peng, X. Li, L.-P. Wang, A scalable interface-resolved simulation of
particle-laden flow using the lattice Boltzmann method, Parallel Comput. 67 (2017)
20–37.

[68] W. Xian, A. Takayuki, Multi-GPU performance of incompressible flow computa-

tion by lattice Boltzmann method on GPU cluster, Parallel Comput. 37 (9) (2011)
521–535.

[69] P.-Y. Hong, L.-M. Huang, L.-S. Lin, C.-A. Lin, Scalable multi-relaxation-time lattice
Boltzmann simulations on multi-GPU cluster, Comput. Fluids 110 (2015) 1–8.

[70] A. Tiribocchi, A. Montessori, G. Amati, M. Bernaschi, F. Bonaccorso, S. Orlandini, S.
Succi, M. Lauricella, Lightweight lattice Boltzmann, J. Chem. Phys. 158 (10) (2023)
104101.
14

http://refhub.elsevier.com/S0017-9310(23)00903-1/bib042EEE145A9FB4B9074308B73167504Bs1
http://refhub.elsevier.com/S0017-9310(23)00903-1/bib042EEE145A9FB4B9074308B73167504Bs1
http://refhub.elsevier.com/S0017-9310(23)00903-1/bib042EEE145A9FB4B9074308B73167504Bs1
http://refhub.elsevier.com/S0017-9310(23)00903-1/bib954FA0DE097BEEAB3899C66BC836F09Fs1
http://refhub.elsevier.com/S0017-9310(23)00903-1/bib954FA0DE097BEEAB3899C66BC836F09Fs1
http://refhub.elsevier.com/S0017-9310(23)00903-1/bib8C05A25593DFC375ED624BB8EB44BA9As1
http://refhub.elsevier.com/S0017-9310(23)00903-1/bib8C05A25593DFC375ED624BB8EB44BA9As1
http://refhub.elsevier.com/S0017-9310(23)00903-1/bib8C05A25593DFC375ED624BB8EB44BA9As1
http://refhub.elsevier.com/S0017-9310(23)00903-1/bib80A2FB476908BBBB5F144D1085AB6956s1
http://refhub.elsevier.com/S0017-9310(23)00903-1/bib80A2FB476908BBBB5F144D1085AB6956s1
http://refhub.elsevier.com/S0017-9310(23)00903-1/bib80A2FB476908BBBB5F144D1085AB6956s1
http://refhub.elsevier.com/S0017-9310(23)00903-1/bib80A2FB476908BBBB5F144D1085AB6956s1
http://refhub.elsevier.com/S0017-9310(23)00903-1/bibAAF9F1B68DE253737AD5B4BB5D655EC7s1
http://refhub.elsevier.com/S0017-9310(23)00903-1/bibAAF9F1B68DE253737AD5B4BB5D655EC7s1
http://refhub.elsevier.com/S0017-9310(23)00903-1/bibAAF9F1B68DE253737AD5B4BB5D655EC7s1
http://refhub.elsevier.com/S0017-9310(23)00903-1/bib2B9E1A3CD35C9268A149F6CB8720B2B3s1
http://refhub.elsevier.com/S0017-9310(23)00903-1/bib2B9E1A3CD35C9268A149F6CB8720B2B3s1
http://refhub.elsevier.com/S0017-9310(23)00903-1/bib2B9E1A3CD35C9268A149F6CB8720B2B3s1
http://refhub.elsevier.com/S0017-9310(23)00903-1/bib13B65D95891FD13D8DFC9475978753EEs1
http://refhub.elsevier.com/S0017-9310(23)00903-1/bib13B65D95891FD13D8DFC9475978753EEs1
http://refhub.elsevier.com/S0017-9310(23)00903-1/bibBDD7C2D439F7E37622B83249791C418Ds1
http://refhub.elsevier.com/S0017-9310(23)00903-1/bibBDD7C2D439F7E37622B83249791C418Ds1
http://refhub.elsevier.com/S0017-9310(23)00903-1/bib4469ADAED834E0871CC4E011AE0D2C85s1
http://refhub.elsevier.com/S0017-9310(23)00903-1/bib4469ADAED834E0871CC4E011AE0D2C85s1
http://refhub.elsevier.com/S0017-9310(23)00903-1/bib85E06BDA3D53127B7C536ADC207DB68Es1
http://refhub.elsevier.com/S0017-9310(23)00903-1/bib85E06BDA3D53127B7C536ADC207DB68Es1
http://refhub.elsevier.com/S0017-9310(23)00903-1/bib85E06BDA3D53127B7C536ADC207DB68Es1
http://refhub.elsevier.com/S0017-9310(23)00903-1/bibEE5164295EF1838240FDCCA6556E0E57s1
http://refhub.elsevier.com/S0017-9310(23)00903-1/bibEE5164295EF1838240FDCCA6556E0E57s1
http://refhub.elsevier.com/S0017-9310(23)00903-1/bibEE5164295EF1838240FDCCA6556E0E57s1
http://refhub.elsevier.com/S0017-9310(23)00903-1/bib29D144D3E2D55CCFC60CB2AD743E9DC5s1
http://refhub.elsevier.com/S0017-9310(23)00903-1/bib29D144D3E2D55CCFC60CB2AD743E9DC5s1
http://refhub.elsevier.com/S0017-9310(23)00903-1/bib29D144D3E2D55CCFC60CB2AD743E9DC5s1
http://refhub.elsevier.com/S0017-9310(23)00903-1/bib25ADC39F7A0B5C71294B9E9E434DBEDDs1
http://refhub.elsevier.com/S0017-9310(23)00903-1/bib25ADC39F7A0B5C71294B9E9E434DBEDDs1
http://refhub.elsevier.com/S0017-9310(23)00903-1/bib25ADC39F7A0B5C71294B9E9E434DBEDDs1
http://refhub.elsevier.com/S0017-9310(23)00903-1/bibF6C6EBE9F0DE17471E430BAAD884E446s1
http://refhub.elsevier.com/S0017-9310(23)00903-1/bibF6C6EBE9F0DE17471E430BAAD884E446s1
http://refhub.elsevier.com/S0017-9310(23)00903-1/bibD057E37D59DF0C16182FB9BC64662936s1
http://refhub.elsevier.com/S0017-9310(23)00903-1/bibD057E37D59DF0C16182FB9BC64662936s1
http://refhub.elsevier.com/S0017-9310(23)00903-1/bibD887DAB35537199828246D3922E990C5s1
http://refhub.elsevier.com/S0017-9310(23)00903-1/bibD887DAB35537199828246D3922E990C5s1
http://refhub.elsevier.com/S0017-9310(23)00903-1/bibD887DAB35537199828246D3922E990C5s1
http://refhub.elsevier.com/S0017-9310(23)00903-1/bib621F6AB2D141BCDA4F687467C9D37A9Fs1
http://refhub.elsevier.com/S0017-9310(23)00903-1/bib621F6AB2D141BCDA4F687467C9D37A9Fs1
http://refhub.elsevier.com/S0017-9310(23)00903-1/bibFBAFD6D0B5933A45972D7DAC87D23A03s1
http://refhub.elsevier.com/S0017-9310(23)00903-1/bibFBAFD6D0B5933A45972D7DAC87D23A03s1
http://refhub.elsevier.com/S0017-9310(23)00903-1/bibFBAFD6D0B5933A45972D7DAC87D23A03s1
http://refhub.elsevier.com/S0017-9310(23)00903-1/bibCA3FCDDCA2FDE05A9B91E92F54D77E9As1
http://refhub.elsevier.com/S0017-9310(23)00903-1/bibCA3FCDDCA2FDE05A9B91E92F54D77E9As1
http://refhub.elsevier.com/S0017-9310(23)00903-1/bibF3BB4B5D89D26F56A16A376FBF214D34s1
http://refhub.elsevier.com/S0017-9310(23)00903-1/bibF3BB4B5D89D26F56A16A376FBF214D34s1
http://refhub.elsevier.com/S0017-9310(23)00903-1/bib9F04EEC6ADBFCD7466384D61C74D0607s1
http://refhub.elsevier.com/S0017-9310(23)00903-1/bib9F04EEC6ADBFCD7466384D61C74D0607s1
http://refhub.elsevier.com/S0017-9310(23)00903-1/bib9F04EEC6ADBFCD7466384D61C74D0607s1
http://refhub.elsevier.com/S0017-9310(23)00903-1/bibB5BBAC9924049B23148CCA57018D9A91s1
http://refhub.elsevier.com/S0017-9310(23)00903-1/bibB5BBAC9924049B23148CCA57018D9A91s1
http://refhub.elsevier.com/S0017-9310(23)00903-1/bibB5BBAC9924049B23148CCA57018D9A91s1
http://refhub.elsevier.com/S0017-9310(23)00903-1/bib9FEBB11D6A95674E8616AC793C7A1D51s1
http://refhub.elsevier.com/S0017-9310(23)00903-1/bib9FEBB11D6A95674E8616AC793C7A1D51s1
http://refhub.elsevier.com/S0017-9310(23)00903-1/bib9FEBB11D6A95674E8616AC793C7A1D51s1
http://refhub.elsevier.com/S0017-9310(23)00903-1/bibD80BD19643C0BB59FAABFF64DCFE0A08s1
http://refhub.elsevier.com/S0017-9310(23)00903-1/bibD80BD19643C0BB59FAABFF64DCFE0A08s1
http://refhub.elsevier.com/S0017-9310(23)00903-1/bib9DA2D5FAF938989807A9117208095795s1
http://refhub.elsevier.com/S0017-9310(23)00903-1/bib9DA2D5FAF938989807A9117208095795s1
http://refhub.elsevier.com/S0017-9310(23)00903-1/bib0639FA2654E51CE67E85CC033FDEAC4Fs1
http://refhub.elsevier.com/S0017-9310(23)00903-1/bib0639FA2654E51CE67E85CC033FDEAC4Fs1
http://refhub.elsevier.com/S0017-9310(23)00903-1/bib911A4F365F22B479BC7FB7279B10CDCEs1
http://refhub.elsevier.com/S0017-9310(23)00903-1/bib911A4F365F22B479BC7FB7279B10CDCEs1
http://refhub.elsevier.com/S0017-9310(23)00903-1/bib911A4F365F22B479BC7FB7279B10CDCEs1
http://refhub.elsevier.com/S0017-9310(23)00903-1/bibD2D06B81BB08F4CAA08546A936766366s1
http://refhub.elsevier.com/S0017-9310(23)00903-1/bibD2D06B81BB08F4CAA08546A936766366s1
http://refhub.elsevier.com/S0017-9310(23)00903-1/bib8C7B1C43C0CDF531DB752BAB635399ADs1
http://refhub.elsevier.com/S0017-9310(23)00903-1/bib8C7B1C43C0CDF531DB752BAB635399ADs1
http://refhub.elsevier.com/S0017-9310(23)00903-1/bibFD4352308880CD8D1430D72D0A351B7Es1
http://refhub.elsevier.com/S0017-9310(23)00903-1/bibFD4352308880CD8D1430D72D0A351B7Es1
http://refhub.elsevier.com/S0017-9310(23)00903-1/bibFD4352308880CD8D1430D72D0A351B7Es1
http://refhub.elsevier.com/S0017-9310(23)00903-1/bib372249F731BF0E2C78A384ABF6B485DDs1
http://refhub.elsevier.com/S0017-9310(23)00903-1/bib372249F731BF0E2C78A384ABF6B485DDs1
http://refhub.elsevier.com/S0017-9310(23)00903-1/bib372249F731BF0E2C78A384ABF6B485DDs1
http://refhub.elsevier.com/S0017-9310(23)00903-1/bibC18258CF7E31006D30B16BAA7EBC5521s1
http://refhub.elsevier.com/S0017-9310(23)00903-1/bibC18258CF7E31006D30B16BAA7EBC5521s1
http://refhub.elsevier.com/S0017-9310(23)00903-1/bibBEB950C3D2447E2AF693CF01F4A4A8A7s1
http://refhub.elsevier.com/S0017-9310(23)00903-1/bibBEB950C3D2447E2AF693CF01F4A4A8A7s1
http://refhub.elsevier.com/S0017-9310(23)00903-1/bibF7B8F1D1348F00E028812AA907CC2E67s1
http://refhub.elsevier.com/S0017-9310(23)00903-1/bibF7B8F1D1348F00E028812AA907CC2E67s1
http://refhub.elsevier.com/S0017-9310(23)00903-1/bibF7B8F1D1348F00E028812AA907CC2E67s1
http://refhub.elsevier.com/S0017-9310(23)00903-1/bib84162AFF1DCC1725BA6F2D499F781023s1
http://refhub.elsevier.com/S0017-9310(23)00903-1/bib84162AFF1DCC1725BA6F2D499F781023s1
http://refhub.elsevier.com/S0017-9310(23)00903-1/bib84162AFF1DCC1725BA6F2D499F781023s1
http://refhub.elsevier.com/S0017-9310(23)00903-1/bib718207EF5C5C408EC055B3A1585DEA18s1
http://refhub.elsevier.com/S0017-9310(23)00903-1/bib718207EF5C5C408EC055B3A1585DEA18s1
http://refhub.elsevier.com/S0017-9310(23)00903-1/bibE7D23FF7EB6B09260FB2DBA031D33556s1
http://refhub.elsevier.com/S0017-9310(23)00903-1/bibE7D23FF7EB6B09260FB2DBA031D33556s1
http://refhub.elsevier.com/S0017-9310(23)00903-1/bibC0DF765EEF80E954B57B9C34387410AAs1
http://refhub.elsevier.com/S0017-9310(23)00903-1/bibC0DF765EEF80E954B57B9C34387410AAs1
http://refhub.elsevier.com/S0017-9310(23)00903-1/bib1E7AD02092BDFC9F324E4996C6F0BD33s1
http://refhub.elsevier.com/S0017-9310(23)00903-1/bib1E7AD02092BDFC9F324E4996C6F0BD33s1
http://refhub.elsevier.com/S0017-9310(23)00903-1/bib1E7AD02092BDFC9F324E4996C6F0BD33s1
http://refhub.elsevier.com/S0017-9310(23)00903-1/bibA3C2B6E3F683118CA9A9ACFF382204A6s1
http://refhub.elsevier.com/S0017-9310(23)00903-1/bibA3C2B6E3F683118CA9A9ACFF382204A6s1
http://refhub.elsevier.com/S0017-9310(23)00903-1/bibF9BD754EF8538257499F7235E0930D27s1
http://refhub.elsevier.com/S0017-9310(23)00903-1/bibF9BD754EF8538257499F7235E0930D27s1
http://refhub.elsevier.com/S0017-9310(23)00903-1/bibF9BD754EF8538257499F7235E0930D27s1
http://refhub.elsevier.com/S0017-9310(23)00903-1/bibD2CA874B26A9D2596664FFB7BD1A2F2Ds1
http://refhub.elsevier.com/S0017-9310(23)00903-1/bibD2CA874B26A9D2596664FFB7BD1A2F2Ds1
http://refhub.elsevier.com/S0017-9310(23)00903-1/bibFB860085BEEAC30367DCFDD77D47B0CBs1
http://refhub.elsevier.com/S0017-9310(23)00903-1/bibFB860085BEEAC30367DCFDD77D47B0CBs1
http://refhub.elsevier.com/S0017-9310(23)00903-1/bibFB860085BEEAC30367DCFDD77D47B0CBs1
http://refhub.elsevier.com/S0017-9310(23)00903-1/bib612F0FDEAC0B004E7DA2B8E8A192B20Fs1
http://refhub.elsevier.com/S0017-9310(23)00903-1/bib612F0FDEAC0B004E7DA2B8E8A192B20Fs1
http://refhub.elsevier.com/S0017-9310(23)00903-1/bib373F16201AB7FAC86B18348076015123s1
http://refhub.elsevier.com/S0017-9310(23)00903-1/bib373F16201AB7FAC86B18348076015123s1
http://refhub.elsevier.com/S0017-9310(23)00903-1/bib373F16201AB7FAC86B18348076015123s1
http://refhub.elsevier.com/S0017-9310(23)00903-1/bib707ED41A6D6267FC1DE7016358419BBBs1
http://refhub.elsevier.com/S0017-9310(23)00903-1/bib707ED41A6D6267FC1DE7016358419BBBs1
http://refhub.elsevier.com/S0017-9310(23)00903-1/bib707ED41A6D6267FC1DE7016358419BBBs1
http://refhub.elsevier.com/S0017-9310(23)00903-1/bib18CD813D0C1DA4879F8B866814C6BB03s1
http://refhub.elsevier.com/S0017-9310(23)00903-1/bib18CD813D0C1DA4879F8B866814C6BB03s1
http://refhub.elsevier.com/S0017-9310(23)00903-1/bib18CD813D0C1DA4879F8B866814C6BB03s1
http://refhub.elsevier.com/S0017-9310(23)00903-1/bibD492E0B10F8839B0D9E67928D4AA3549s1
http://refhub.elsevier.com/S0017-9310(23)00903-1/bibD492E0B10F8839B0D9E67928D4AA3549s1
http://refhub.elsevier.com/S0017-9310(23)00903-1/bibD492E0B10F8839B0D9E67928D4AA3549s1
http://refhub.elsevier.com/S0017-9310(23)00903-1/bibF878149C6A673BAF62CC0A96B17CFBEFs1
http://refhub.elsevier.com/S0017-9310(23)00903-1/bibF878149C6A673BAF62CC0A96B17CFBEFs1
http://refhub.elsevier.com/S0017-9310(23)00903-1/bibF878149C6A673BAF62CC0A96B17CFBEFs1
http://refhub.elsevier.com/S0017-9310(23)00903-1/bibC39EDB6ACFB634B320C1F288EDEB6A4As1
http://refhub.elsevier.com/S0017-9310(23)00903-1/bibC39EDB6ACFB634B320C1F288EDEB6A4As1
http://refhub.elsevier.com/S0017-9310(23)00903-1/bib4AF2E611F91C6A367751A2AD8ED37A8Bs1
http://refhub.elsevier.com/S0017-9310(23)00903-1/bib4AF2E611F91C6A367751A2AD8ED37A8Bs1
http://refhub.elsevier.com/S0017-9310(23)00903-1/bib4AF2E611F91C6A367751A2AD8ED37A8Bs1

	Particle-resolved thermal lattice Boltzmann simulation using OpenACC on multi-GPUs
	1 Introduction
	2 Numerical method
	2.1 The LB model for fluid flow and heat transfer
	2.2 Kinematic model of the solid particle
	2.3 Boundary conditions at the fluid-particle interface
	2.4 Interaction between fluid and particle phases
	2.5 Refilling scheme to construct unknown distribution functions
	2.6 Validation of the particle-resolved LB model
	2.6.1 Sedimentation of a group of 800 circular particles in isothermal fluids
	2.6.2 Sedimentation of a group of 172 circular or elliptical hot particles in cold fluids
	2.6.3 Sedimentation of 4,800 circular hot particles in cold fluids

	3 Implementation and optimization on a single GPU
	4 Implementation and optimization on multi-GPUs
	4.1 A naïve implementation using hybrid OpenACC and MPI technique
	4.2 Building the domain list
	4.3 Utilizing request-answer communication
	4.4 Overlapping communications with computations
	4.5 Executing computation tasks concurrently

	5 Conclusions
	CRediT authorship contribution statement
	Declaration of competing interest
	Data availability
	Acknowledgements
	Appendix A An elliptical cold particle settling in hot fluids
	Appendix B Two circular hot particles settling in cold fluids
	References

