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Pore-scale statistics of temperature and thermal energy dissipation rate
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Ao Xu ,1,2 Ben-Rui Xu,1 and Heng-Dong Xi 1,2,*

1School of Aeronautics, Northwestern Polytechnical University, Xi’an 710072, China
2Institute of Extreme Mechanics, Northwestern Polytechnical University, Xi’an 710072, China

(Received 18 February 2023; accepted 28 August 2023; published 18 September 2023)

We report pore-scale statistical properties of temperature and thermal energy dissipa-
tion rate in a two-dimensional porous Rayleigh-Bénard (RB) cell. High-resolution direct
numerical simulations were carried out for the fixed Rayleigh number (Ra) of 109 and
the Prandtl numbers (Pr) of 5.3 and 0.7. We consider sparse porous media where the
solid porous matrix is impermeable to both fluid and heat flux. The porosity (φ) range
0.86 � φ � 0.98, the corresponding Darcy number (Da) range 10−4 < Da < 10−2 and
the porous Rayleigh number (Ra∗ = Ra · Da) range 105 < Ra∗ < 107. Our results indicate
that the plume dynamics in porous RB convection are less coherent when the solid porous
matrix is impermeable to heat flux, as compared to the case where it is permeable. The
averaged vertical temperature profiles remain almost a constant value in the bulk, while
the mean-square fluctuations of temperature increases with decreasing porosity. Further-
more, the absolute values of skewness and flatness of the temperature are much smaller in
the porous RB cell than in the canonical RB cell. We found that intense thermal energy
dissipation occurs near the top and bottom walls, as well as in the bulk region of the
porous RB cell. In comparison with the canonical RB cell, the small-scale thermal energy
dissipation field is more intermittent in the porous cell, although both cells exhibit a
non-log-normal distribution of thermal energy dissipation rate. This work highlights the
impact of impermeable solid porous matrices on the statistical properties of temperature
and thermal energy dissipation rate, and the findings may have practical applications in
geophysics, energy and environmental engineering, as well as other fields that involve the
transport of heat through porous media.

DOI: 10.1103/PhysRevFluids.8.093504

I. INTRODUCTION

Thermal convection in porous media is frequently encountered in geophysics, energy, and
environmental engineering, and so on [1–3]. An example is geothermal energy, which involves the
extraction of thermal energy from the earth’s crust [4]. Specifically, the heat generated and stored
in the earth warms water that has infiltrated underground reservoirs, and the hot water can escape
to the surface as steam. Another example is redox flow battery [5], which is an energy storage
device used to store intermittent solar and wind power. The performance of the redox flow batteries
relies on the coupled transport of electrolyte, heat, mass, and electrons in the porous electrodes.
In thermal convection [6–11], the key parameter quantifying the strength of buoyancy forces over
dissipation force is the Rayleigh number Ra = βg�T H3/(να). Here, β, α, and ν are the thermal
expansion coefficient, thermal diffusivity, and kinematic viscosity of the fluid, respectively; g is the
gravitational acceleration, and �T = Thot − Tcold is the temperature difference across the fluid layer
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of height H . For the porous media, its ability to transmit fluids is quantified by the permeability
K , and it is usually represented by the dimensionless Darcy number as Da = K/L2, where L is the
characteristic length. The permeability of the porous media is only determined by the geometry of
the porous structure, and its value is a complex function of various parameters including the porosity
φ (i.e., the fluid volume fraction) of the porous media.

Fluid flows and associated transport processes in porous media are complex phenomena that can
occur over a wide range of spatial and temporal scales. To simulate these phenomena, numerical
methods can be classified into two categories, namely, the representative elementary volume (REV)-
scale method and the pore-scale method [12,13]. The REV-scale method considers volume-averaged
flow quantities (such as velocity, pressure, and permeability) over a representative volume that
consists of many pores. Empirical relations, such as the Blake-Kozeny-Carman relation [14], can be
used to efficiently estimate permeability K of the porous structure. For porous media convection, the
Darcy-Oberbeck-Boussinesq (DOB) equations can be derived using the volume-averaged approach
[15]. While the REV-scale method has the advantage of high computational efficiency, its accuracy
relies heavily on the adopted empirical relations. A review paper by Hewitt [16] provides an in-depth
exploration of the REV-scale modeling and simulation of convection in porous media. In contrast,
the pore-scale method resolves the geometry of individual pores, allowing for the calculation of
constitutive closure relations such as permeability as a function of porosity. This method can
accurately reflect the geometrical effect of porous structure on the transport process; however,
the high computational cost of pore-scale simulation limits its wide engineering applications. In
short, both the REV-scale method and the pore-scale method have their respective advantages and
limitations. Choosing the appropriate method depends on the specific requirements of the problem
at hand, including the desired level of accuracy and computational resources available [17,18].

In turbulent thermal convection, to quantify the dissipation of thermal energies due to thermal
diffusivity, the thermal energy dissipation rate is defined as εT (x, t ) = k

∑
i[∂iT (x, t )]2. In the

canonical Rayleigh-Bénard (RB) convection cell filling with pure fluid (i.e., a fluid layer heated
from the bottom and cooled from the top), Shraiman and Siggia [19] derived exact relations of
global average εT = 〈εT (x, t )〉V = κ�2

T L−2Nu, which further form the backbone of the Grossman-
Lohse (GL) theory [20,21] on turbulent heat transfer. With the aid of DNS results, Emran and
Schumacher [22] analyzed the probability density functions (PDFs) of εT in a cylindrical cell.
They found the PDFs deviate from a log-normal distribution but fit well by a stretched exponential
distribution, which is similar to passive scalar dissipation rate in homogeneous isotropic turbulence.
Subsequently, Kaczorowski and Wagner [23] analyzed the contributions of bulk and boundary layers
and plumes to the PDFs of the εT in a rectangular cell, and they found that the core region scaling
changes from pure exponential to a stretched exponential scaling as Ra increases. Recently, Xu
et al. [24], Zhang et al. [25], and Bhattacharya et al. [26] obtained the Ra scaling relations for
the thermal dissipation rate in the bulk and the boundary layers at low-, moderate-, and high-Pr
regime, respectively. An interesting finding is that despite the boundary layer region occupied a
much smaller volume, the globally averaged thermal energy dissipation rate from the boundary
layer region is still larger than that from the bulk region.

Although considerable efforts have been devoted to exploring the statistical properties of tem-
perature and thermal energy dissipation rate in the canonical RB convection cell, fewer studies
have focused on investigating the pore-scale statistics of these quantities in the turbulent porous
RB convection cells [27–30]. In a study by Liu et al. [27], a porous RB cell was considered
where the thermal properties of the fluid and solid phases were assumed to be the same, indicating
that the solid porous media were permeable to heat flux. In contrast, in our work, we assume
that the solid matrix is impermeable to heat flux, which is a reasonable assumption for porous
media with much lower thermal conductivities compared to that of the fluid. For example, porous
structures made of ceramics (alumina and zirconia) and carbon-based materials (activated carbon
and carbon nanotubes) serve as effective thermal insulators. Moreover, because of the analogy
between heat transfer and mass transfer, the impermeable heat flux boundary condition can be
considered analogous to nonreacting boundary conditions at the surface of solid obstacles [31]; as
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a result, our work on scalar transport could potentially inspire further research on convective mass
transfer in porous media [32]. The rest of this paper is organized as follows. In Sec. II, we present
the numerical details including pore-scale simulation of fluid flows and heat transfer, as well as
generation and characterization of porous media. In Sec. III, we first present general features of
fluid flows and heat transfer in the pores, and then we analyze statistics of temperature and thermal
energy dissipation rate. In Sec. IV, the main findings of the present work are summarized.

II. NUMERICAL METHODS

A. Mathematical model for fluid flows and heat transfer at pore scale

In the pore-scale method, individual pore geometry is directly resolved, thus, the governing
equations for fluid flows and heat transfer in the pores are the Navier-Stokes equations with
Boussinesq approximation:

∇ · u f = 0 (1a)

∂u f

∂t
+ u f · ∇u f = − 1

ρ0
∇P + ν f ∇2u f + gβ(Tf − T0)ŷ (1b)

∂Tf

∂t
+ u f · ∇Tf = α f ∇2Tf . (1c)

Here, the subscript f denotes the fluid phase. u f , P, and Tf are the fluid velocity, pressure, and
temperature in the pores, respectively. ρ0 and T0 are reference density and temperature, respectively.
g is the gravity value and ŷ is the unit vector in the vertical direction. In Eq. (1), all the transport
coefficients (i.e., ν f , α f , β) are assumed to be constants. Using the nondimensional group

x∗ = x/H, t∗ = t/
√

H/(gβ�T ), u∗
f = u f /

√
gβ�T H ,

P∗ = P/(ρ0gβ�T H ), T ∗
f = (Tf − T0)/�T .

(2)

Equation (1) can be rewritten in dimensionless form as

∇ · u∗
f = 0 (3a)

∂u∗
f

∂t∗ + u∗
f · ∇u∗

f = −∇P∗ +
√

Pr

Ra
∇2u∗

f + T ∗
f ŷ (3b)

∂T ∗
f

∂t∗ + u∗
f · ∇T ∗

f =
√

1

PrRa
∇2T ∗

f . (3c)

In the following, for convenience, we will drop the superscript star (∗) to denote a dimensionless
variable. The dimensionless parameters of the Rayleigh number (Ra) and the Prandtl number (Pr)
are defined as

Ra = gβ�T H3

ν f α f
, Pr = ν f

α f
. (4)

B. Lattice Boltzmann model for incompressible thermal flows

We adopt the lattice Boltzmann (LB) method [33–35] as the numerical tool for direct numerical
simulation of turbulent thermal convection in the pores. In the LB method, to solve Eqs. (1a) and
(1b), the evolution equation of density distribution function is written as

fi(x + eiδt , t + δt ) − fi(x, t ) = −(M−1S)i j
[
m j (x, t ) − m(eq)

j (x, t )
] + δt F

′
i . (5)

To solve Eq. (1c), the evolution equation of temperature distribution function is written as

gi(x + eiδt , t + δt ) − gi(x, t ) = −(N−1Q)i j
[
n j (x, t ) − n(eq)

j (x, t )
]
. (6)
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Here, fi and gi are the density and temperature distribution functions, respectively. x is the fluid
parcel position, t is the time, δt is the time step. ei is the discrete velocity along the ith direction.
M is a 9 × 9 orthogonal transformation matrix based on the D2Q9 discrete velocity model; N is a
5 × 5 orthogonal transformation matrix based on the D2Q5 discrete velocity model. The equilibrium
moments m(eq) in Eq. (5) are

m(eq) = ρ[1, −2 + 3|u f |2, 1 − 3|u f |2, u f ,−u f , v f , −v f , 2u2
f − v2

f , u f v f ]T . (7)

The equilibrium moments n(eq) in Eq. (6) are

n(eq) = [Tf , u f Tf , v f Tf , aT Tf , 0]T , (8)

where aT is a constant determined by the thermal diffusivity as aT = 20
√

3κ f − 4. The relaxation
matrix S is S = diag(sρ, se, ss, s j, sq, s j, sq, sν, sν ), and the kinematic viscosity of the fluids is
calculated as v f = (s−1

v − 0.5)/3. The relaxation matrix Q is given by Q = diag(0, qk, qk, qe, qv ),
where qκ = 3 − √

3 and qe = qν = 4
√

3 − 6.
The macroscopic fluid variables of density ρ f , velocity u f and temperature Tf are calculated as

ρ f = ∑8
i=0 fi, u f = (

∑8
i=0 ei fi + F/2)/ρ f and Tf = ∑4

i=0 gi, respectively. More numerical details
on the LB method and validation of the in-house code can be found in our previous work [36–38].

C. Boundary conditions at the fluid-solid interface

We assume the solid matrix is impermeable to both fluid and heat flux. At the fluid-solid interface,
the no-slip velocity boundary conditions can be described as u f = 0; while the adiabatic temperature
boundary conditions can be described as ∂nTf = 0. In the LB method, the above fluid-solid interface
conditions can be mimic by the bounce-back rules for the density and temperature distribution
functions as fī(x f , t + δt ) = f ∗

i (x f , t ) and gī(x f , t + δt ) = g∗
i (x f , t ), respectively.

D. Generation and characterization of porous structure

We artificially construct the porous structure via randomly placing square cylinders of length d
in the RB convection cell, as illustrated in Fig. 1(a). In Fig. 1(b), we further present an enlarged view
of the porous region as that in Fig. 1(a), and we illustrate the directional average method [39,40]
to calculate pore size distribution (PSD). At each fluid point, we start counting the pore length
along with specified directions until reaching a solid point; then, the pore diameter is obtained by
averaging the pore length in all given eight directions. It should be noted that the directional average
method provides an approximate assessment of pore size, and it comes with inherent limitations.
This method determines the average span of the pore spaces from a certain point in all possible
directions (i.e., eight discrete directions in this work) until an obstacle or the boundary of the domain
is encountered. When assessing fluid points near the boundary, we exclude directions beyond the
domain boundary. The absence of obstacles in certain directions could lead to an unusually large
distance, causing an overestimation of pore size. Nevertheless, the method retains its applicability
in this work, as the issues related to boundary effects or statistical anomalies can be mitigated by
employing a large computational domain. In addition, it is particularly beneficial when our goal is
to determine the average pore sizes across the porous medium. Figure 1(c) shows the probability
density functions (PDFs) of calculated pore size for five different realizations of the porous structure
at the same porosity of φ = 0.86. Here, the pore size is normalized by the cylinder length d . We can
see that despite different realizations of the porous structure generation, the pore size distributions
are roughly the same at the same porosity. In Fig. 1(d), we compare the pore size for porous structure
with different porosities of φ = 0.86, 0.90, and 0.94. Overall, the pore size exhibits unimodal
distribution, and it increases with the increase of porosity.

To determine the permeability K of the porous structure, we performed another set of pore-scale
simulations when the flow is isothermal and in the Darcy regime. As illustrated in Fig. 2(a), fluid
flows through porous media is driven by a small pressure difference (Pin − Pout )/Pref = 2 × 10−4
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(a) (b)

(c) (d)

FIG. 1. (a) Illustration of the porous convection cell. The black region represents the solid matrix, and
the white region represents the fluid. (b) An enlarged view of the porous region in (a), and the schematic
illustration of the directional average method to calculate pore size. The probability density functions (PDFs)
of normalized pore size for (c) different realizations of the porous structure at the same porosity of φ = 0.86
and (d) porous structure with different porosities.

either in lateral or longitudinal direction, such that flow is sufficient slow. Following the Darcy’s
law [41], we calculate the permeability tensor as [12]

K = −μ
〈u f 〉

∇〈p〉 f
(9)

Here, the intrinsic phase average is defined as 〈ψ f 〉 f = (1/Vf )
∫

Vf
ψ f dv, and the superficial phase

average is defined as 〈ψ f 〉 = (1/V )
∫

Vf
ψ f dv. Vf denotes the volume of the fluid phase within the

(a) (b)

FIG. 2. (a) Illustration of the simulation settings to calculate the permeability of porous structure; (b) Darcy
number as a function of porosity (the error bar is calculated based on results from five different realizations of
the porous structure at the same porosity).
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representative volume V , and ψ f is a quantity associated with the fluid phase. We also check the
pore-scale Reynolds number ReD = 〈u f 〉 f D/ν satisfies ReD � O(1), thus, the condition to apply
Darcy’s law is guaranteed. In Fig. 2(b), we show the permeabilities in lateral and longitude directions
(i.e., Kxx and Kyy), respectively, which are further presented in terms of dimensionless Darcy number
Da = K/L2. Here, the characteristic length L is chosen as convection cell size. We can see that the
lateral and longitudinal permeabilities are generally the same, suggesting the artificially constructed
porous structure is homogeneous. Besides, we compare the calculated permeability with empirical
Blake-Kozeny-Carman relation [14]

K = φ3D2

150(1 − φ)2
(10)

We can see from Fig. 2(b), the empirical relation overestimates the permeability for the sparse
porous media, and the deviations increase with increasing the porosity. For the investigated porosity
range 0.86 � φ � 0.98, the corresponding Da range 10−4 < Da < 10−2.

E. Simulation settings

We consider a two-dimensional (2D) porous RB convection cell with size L = H . The top and
bottom walls of the cell are kept at a constant cold and hot temperature, respectively; the other two
vertical walls are adiabatic. All four walls impose no-slip velocity boundary conditions. We provide
simulation results at Prandtl number of Pr = 5.3 and 0.7 (i.e., corresponding to the working fluid
of water and air, respectively) and a fixed Ra = 109. The porosity (φ) range 0.86 � φ � 0.98, and
the corresponding porous Rayleigh number (Ra∗ = Ra · Da) range 105 < Ra∗ < 107, suggesting
vigorous convection in porous media [16]. In addition, we show the scaling of the global quantities
on one of the control parameters Ra (for 106 � Ra � 109), while the porosity is fixed as φ = 0.86
and Prandtl number is fixed as Pr = 5.3 and 0.7. A total of 100 simulations were carried out for
porous convection with impermeable solid matrix, and tabulated values on the results are listed
in the Appendix. For the canonical RB convection, the mesh size of the convection cell is 1024
l.u.×1024 l.u.; while for the porous RB convection, the mesh size is even finer with 1200 l.u.×1200
l.u. The resolution for the cylinder length d is 40 l.u., and the minima gap between two cylinders is
40 l.u. Here, l.u. denotes the lattice length unit in the LB simulation [42].

For canonical RB convection of pure fluid, we verify the grid spacing �g and time interval
�t is properly resolved by comparing with the Kolmogorov and Batchelor scales. Specifically,
the Kolmogorov length scale [43] is estimated by the global criterion ηK = [ν3/(εu)V,t ]1/4 =
HPr1/2/[Ra(Nu − 1)]1/4, the Batchelor length scale [44] is estimated by ηB = ηK Pr−1/2, and the
Kolmogorov time scale [43] is estimated as τη = √

ν/〈εu〉V,t = t f
√

Pr/(Nu − 1). Here, εu denotes
the kinetic energy dissipation rates, and its global average can be related to the Nusselt number via
the exact relation [19] 〈εu〉V,t = ν3Ra(Nu − 1)/(H4Pr2). Simulation results have shown that grid
spacing satisfies the criterion of max (�g/ηK , �g/ηB) � 0.55, which ensures spatial resolution; the
time intervals are �t � 0.00047τη, thus adequate temporal resolution is guaranteed. In addition, we
validate our results by comparing the Nusselt and Reynolds number with those obtained using the
NEK5000 solver (version v19.0) [45], as well as previous results reported by Zhang et al. [25]. The
tabulated values are presented in Table I. Note that the small deviations in the average statistical
value may be attributed to turbulence fluctuations. For porous RB convection, both the cylinder
length (d = 40 l.u.) and minima gap between the cylinders (i.e., 40 l.u.) are much large than that of
the boundary layer thickness (around 10 l.u.), thus the pore space is adequately resolved.

III. RESULTS AND DISCUSSION

A. General fluid flows and heat transfer features in the pores

A typical snapshot of an instantaneous temperature field in both a porous and a canonical
RB convection cell is shown in Fig. 3, and the corresponding video can be viewed in the in
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TABLE I. Heat transfer efficiency and global flow strength in the canonical RB convection. The columns
from left to right indicate the following: the Rayleigh number Ra, the Prandtl number Pr, the Nusselt number
Nu, and the Reynolds number Re obtained using in-house LB solver, the NEK5000 solver [45], and previous
results reported by Zhang et al. [25].

Nu Re

Ra Pr LB NEK5000 Ref. [25] LB NEK5000 Ref. [25]

106 5.3 6.93 6.92 6.87 38 36 38
106 0.7 6.33 6.31 6.30 280 279 279
107 5.3 13.36 13.25 13.28 156 154 156
107 0.7 11.42 11.36 11.37 968 973 968
108 5.3 26.23 26.25 26.21 597 596 596
108 0.7 25.32 25.25 25.25 3661 3692 3662
109 5.3 51.50 51.34 51.28 2273 2308 2269
109 0.7 49.75 49.76 53.51 15588 15633 15101

the Supplemental Material [46]. We can see that the flow structure in the porous RB convection
exhibits different patterns from that in the canonical RB convection. In the canonical RB convection
[see Figs. 3(b) and 3(d)], the rising and falling thermal plumes self-organize into a well-defined
large-scale circulation (LSC) that spans the size of the convection cell [47], and there exist coun-
terrotating corner rolls. The temperature field is efficiently mixed in the convection cell, with the
bulk temperature being almost a constant value of (Thot + Tcold )/2. In contrast, in the porous RB
convection [see Figs. 3(a) and 3(c)], the flow structure is less coherent and the large-scale flow
circulation is suppressed. The rising and falling plumes penetrate through the pore throat, resulting
in less mixing of the temperature field. This flow pattern is similar to that observed in the study by
Liu et al. [27], where the porous matrix was permeable to heat flux. However, in the current work,
we assume that the solid porous matrix is impermeable to heat flux. When the solid porous matrix
does not conduct heat, there is no thermal exchange between the solid and fluid phases, and the
fluid phase’s ability to effectively interact with the solid phase is diminished compared to scenarios
involving a thermally conductive solid porous matrix. Consequently, the plume dynamics are less
coherent than in the previous study. In the Supplemental Material [46], we provide corresponding
videos, which allow for a more detailed examination of the flow patterns and temperature field in
the two types of convection cells.

To validate the above conjecture, we calculate the cross-correlation coefficient between vertical
velocity v and temperature T along the mid-plane of the cell, given by

Rv,T = 〈[v(t ) − 〈v〉][T (t ) − 〈T 〉]〉
σvσT

, (11)

where σv,T denotes the standard deviation of v and T . We conducted simulations for two cases:
one with solid porous matrix being permeable to heat flux (referred to as permeable heat flux,
following the simulation settings reported by Liu et al. [27]), and the other is the solid porous
matrix being impermeable to heat flux (referred to as impermeable heat flux). Five different
realizations of the porous structure were considered at the same porosity φ = 0.86. Figures 4(a)
and 4(b) show the cross-correlation coefficient Rv,T for both cases. We can observe that Rv,T is
generally lower for the impermeable heat flux case, which implies that the thermal plumes are less
coherent. We further calculate the joint probability density distribution of the vertical velocity v and
temperature fluctuation δT = T − (Thot + Tcold )/2. In comparison to a thermally conductive solid
porous medium, an impermeable medium reduces the correlation between vertical velocity and
temperature. This effect is due to the inherent nonthermal conductivity property of the impermeable
medium. When the solid porous matrix does not conduct heat, the fluid phase’s ability to interact
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FIG. 3. A typical snapshot of the instantaneous temperature field for (a), (b) Pr = 5.3; (c), (d) Pr = 0.7 in
(a), (c) a porous RB convection cell with φ = 0.86 and (b), (d) a canonical RB convection cell (i.e., φ = 1.00).

effectively with the solid phase is diminished compared to scenarios with a heat-conductive solid
porous matrix.

In Fig. 5, we show the time-averaged flow field (temperature field and streamlines), where we can
see that the presence of the solid porous matrix disrupts the LSC (i.e., the tilted elliptical main roll at
Pr = 5.3 or the circular main roll at Pr = 0.7 in the canonical RB cell), and the LSC shape becomes
more irregular in the porous RB cell. We note the existence of solid surfaces with a no-slip boundary
condition significantly affect the flow patterns, resulting in the differences in the smoothness of the
streamlines between the porous RB cell and the canonical RB cell. Meanwhile, to address concerns
regarding simulation convergence, we have checked temperature fields and streamlines averaged
over different time intervals to demonstrate convergence (not shown here for clarity). The corner
rolls in the porous cell are also suppressed due to the existence of the porous matrix. Overall, we
expect such disruption would lead to much more complex substructures inside the LSC at some
porosities. Specifically, when the porosity is too large, the solid porous matrix occupies only a
small volume fraction in the convection cell and it will have minor effects on the flow structure;
when the porosity is too small, detached plumes from the top and bottom walls will only penetrate
through the porous throat, and the dense porous structure may prohibit the formation of the LSC.
Once the substructures emerge inside the LSC, they contribute to an increased instability within
the LSC, potentially inducing flow reversals in turbulent thermal convection [48]. Our simulations
have confirmed this conjecture, as we indeed observe flow reversal in the porous RB convection
at Ra = 109 and Pr = 0.7 with various porosities. Previous study by Sugiyama et al. [49] suggests
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(a) (b)

(c) (d)

(e) (f)

FIG. 4. (a), (b) Cross-correlation coefficient Rv,T between vertical velocity v and temperature T for five
different realizations of the porous structure; (c)–(f) logarithmic of joint probability density function (PDF) of
vertical velocity v and temperature fluctuation δT at the height of y = 0.5, for (c), (d) solid porous matrix being
permeable to heat flux, (e), (f) solid porous matrix being impermeable to heat flux, at φ = 0.86, Ra = 109, and
(a), (c), (e) Pr = 5.3, (b), (d), (f) Pr = 0.7.

that flow reversal is absent in the canonical 2D RB convection at the same Ra and Pr (i.e., Ra =
109 and Pr = 0.7), thus the solid porous matrix has a profound impact on the flow dynamics, and
understanding these effects is essential for predicting and controlling convection in porous media.

We measure the global heat transport by the volume-averaged Nusselt number (Nu) as Nu = 1 +√
PrRa〈v∗T ∗〉V,t , while the global strength of the convection is measured by the Reynolds number

(Re) as Re = √
Ra/Pr

√〈u∗2 + v∗2〉V,t . Here, 〈·〉V,t denotes the superficial phase and time average,
the asterisk superscript (*) denote the dimensionless variables. At each porosity, we calculate the
Nu and Re based on results from five different realizations of the porous structure. From Fig. 6(a),
we can see that Nu increases monotonously with the decreasing of porosity over 0.86 � φ � 0.98
at Pr = 5.3, while Nu increases first and then decreases with the decreasing of porosity at Pr = 0.7.
The enhanced heat transfer efficiency with slightly decreasing porosity is attributed to strongly
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FIG. 5. Time-averaged temperature field (contour) and streamlines for (a), (b) Pr = 5.3; (c), (d) Pr = 0.7 in
(a), (c) a porous RB convection cell with φ = 0.86 and (b), (d) a canonical RB convection cell (i.e., φ = 1.00).

correlated velocity and temperature fields. However, further decreasing the porosity increases the
impedance from the porous solid matrix on heat transfer. We hypothesize the competition of these
two factors results in an optimal porosity value when heat transfer efficiency is maximized. For
Pr = 0.7, we observed this hypothesized optimal value at porosity around 0.90, while for Pr =
5.3, the optimal porosity value may be smaller than those under investigations (i.e., φ < 0.86),

(a) (b)

FIG. 6. (a) Nusselt number and (b) Reynolds number as a function of porosity for Pr = 5.3 and Pr = 0.7.
The error bar is calculated based on results from five different realizations of the porous structure at the same
porosity.
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(b)(a)

FIG. 7. (a) Nusselt number, (b) Reynolds number as functions of Rayleigh number for two Prandtl
numbers, when the porosity is fixed as φ = 0.86. The error bar is calculated based on results from five different
realizations of the porous structure at the same porosity.

thus we did not observe such optimal value in our simulations. It should be noted that to ensure
adequate resolution of the pore spaces, we only consider sparse porous media in our simulations;
in addition, considering the observations alongside the presence of error bars, we recognize the
necessity for caution when attempting to draw definitive conclusions regarding the existence of an
optimal porosity. This is particularly crucial when accounting for the potential influence of varying
Prandtl numbers. As for the global flow strength, we can see from Fig. 6(b) that Re decreases
monotonously with the decreasing of the porosity, which can be understood as the introduction of
the porous solid matrix in the convection cell enhances flow resistance.

(a) (b)

(c)

FIG. 8. Probability density functions (PDFs) of the normalized temperature (T − μT )/σT measured at
(a) y = 0.75H , (b) y = 0.25H , (c) y = 0.5H in both porous and canonical RB convection cells.
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(a) (b)

(c)

FIG. 9. Probability density functions (PDFs) of the normalized temperature (T − μT )/σT measured near
the porous matrix and away from the porous matrix, respectively, for (a) Pr = 5.3 and (b) Pr = 0.7, at φ =
0.86. (c) An enlarged view in the porous cells, the black region represents the porous matrix, the gray region
represents the fluid near the porous matrix, and the white region represents the fluid away from the porous
matrix.

We also show the scaling of the global quantities, such as Nu and Re, on one of the control
parameters Ra (for 106 � Ra � 109), while the porosity is fixed as φ = 0.86. We also provide Nu
and Re in the canonical RB convection. Previously, Zhang et al. provided tabulated values of Nu and
Re versus Ra at Pr = 5.3 and 0.7. Our simulation results on the canonical RB convection are in good
agreement with those reported by Zhang et al. [25]. The data shown in Fig. 7 indicate that in the
porous convection, the increase of Nu and Re gradually approaches the power-law relations Nu ∝
Ra0.30 and Re ∝ Ra0.59, consistent with previous results reported in the canonical RB convection
[25,50,51]. At fixed φ, the scaling behavior of Nu and Re with Ra slightly deviates from that of the
canonical RB convection when Ra is smaller, suggesting that heat transfer and momentum exchange
are not solely governed by the boundary layer.

B. Statistics of temperature

Figure 8 shows the probability density functions (PDFs) of normalized temperature (T − μT )/σT

measured at three different heights. In both porous and canonical RB cells, the PDFs of temperature
are left-skewed near the top region (i.e., y = 0.75H) due to dominated cold falling plumes, right-
skewed near the bottom region (i.e., y = 0.25H) due to dominated hot rising plumes, and symmetric
at midheight (i.e., y = 0.5H) as a result of comparable falling cold plumes and rising hot plumes.
Meanwhile, despite these similarities, there are notable differences between the PDF profiles of the
two cells. Specifically, in the canonical RB cell, the peak of the temperature PDF profiles exhibits
a stretched exponential behavior, and the tails show a Gaussian behavior; in contrast, in the porous
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(a) (b)

(c) (d)

FIG. 10. Averaged vertical profile of (a), (c) temperature and (b), (d) mean-square fluctuations of tempera-
ture obtained at (a), (b) Pr = 5.3 and (c), (d) Pr = 0.7 for various porosities. The vertical profiles are averaged
over five different realizations of the porous structure at the same porosity. The inset magnifies the thermal
boundary layer.

RB cell, the temperature PDF profiles are narrowed down, and the stretched exponential peaks are
absent, indicating that porous media suppresses extreme temperature events in the convection cell.

To highlight the damping effect that arises from the presence of a porous structure, which
impedes both hot and cold thermal plumes, we analyze the PDFs of the fluid temperature in two
regions: near the solid porous matrix and away from it. Specifically, we consider fluid nodes with
distances less than 5 l.u. from the porous matrix as the near region, and fluid nodes with distances
more than 5 l.u. as the away region, as illustrated in Fig. 9(c). In Figs. 9(a) and 9(b), we plot the
PDFs of the temperature obtained over the whole cell and over time in the above two regions. We can
see that the PDFs of temperature in both regions exhibit a symmetric peak, indicating a comparable
occurrence of hot and cold plumes in those two regions. However, the PDFs of temperature near
the porous matrix have narrower tails compared to that away from the porous matrix. This narrower
tail implies a reduced degree of small-scale intermittency of the temperature fluctuations near the
porous matrix.

We now provide the averaged vertical profile of statistics of the temperature field to quantitatively
describe the temperature distributions. We first calculate the averaged vertical profile of temperature
〈T 〉x,t and mean-square fluctuations 〈θ2〉x,t for various porosities, as shown in Fig. 10. Here, the
fluctuations θ (x, t ) = T (x, t ) − 〈T 〉x,t (y); the average 〈·〉x,t is calculated over time t and along the
horizontal line x in the fluid phase. Note that the average over the fluid phase is referred to as
the intrinsic phase average, in contrast to the superficial phase average, which would encompass
the entire porous media domain. For the porous RB convection, the vertical profiles are further
averaged over five different realizations of the porous structure at the same porosity. This fivefold
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(a) (b)

(c) (d)

FIG. 11. Averaged vertical profile of (a), (c) skewness of temperature and (b), (d) flatness of temperature
obtained at (a), (b) Pr = 5.3 and (c), (d) Pr = 0.7 for various porosities.

averaging is conducted to mitigate the statistical errors arising from the random distribution of
the porous medium. We can see from Figs. 10(a) and 10(c), away from the top and bottom
walls, the averaged vertical temperature profiles are almost a constant value of (Thot + Tcold )/2 in
both canonical and porous RB cells. This finding suggests that the temperature field in the bulk
region of the fluid is insensitive to the presence of the impermeable solid matrix. In contrast,
Figs. 10(b) and 10(d) reveal that the averaged vertical profiles of mean-square fluctuations of
the temperature are sensitive to the porosity. With the decreasing of porosity, the flow structure
becomes less coherent, leading to an increase in the fluctuations of temperature. From the inset
of Figs. 10(b) and 10(d), we can also measure the thickness of thermal boundary layer δT as the
location of the peak value in the profile [22,52], which is close to H/(2Nu). For the canonical RB
convection (i.e., φ = 1.00), the temperature fluctuation profile diverges between Pr of 5.3 and 0.7.
As shown in Fig. 10(b), the profile at Pr = 5.3 exhibits two peaks around y = 0.65 and y = 0.35,
different from the pattern observed at Pr = 0.7 [see Fig. 10(d)]. This variation could be attributed
to differences in the corner rolls at different Prandtl numbers. Upon comparing with Fig. 5(b), it
becomes apparent that the enhancement in turbulent fluctuations coincides with heights of corner
rolls that are situated diagonally, thereby leading to the emergence of the peaks observed in the bulk
region of temperature fluctuation profile at Pr = 5.3. These differences highlight the complexity of
the system’s temperature fluctuations and plume dynamics in response to the Prandtl number.

We further calculate the averaged vertical profile of higher-order moments of temperature and
plot the skewness Sθ (y) = 〈θ3〉x,t/〈θ2〉3/2

x,t and flatness Fθ (y) = 〈θ4〉x,t/〈θ2〉2
x,t of temperature, as

shown in Fig. 11, where the vertical profiles are averaged over five different realizations of the
porous structure at the same porosity. Skewness evaluates the asymmetry of the distribution, whereas
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FIG. 12. A typical snapshot of the instantaneous plume field for (a), (b) Pr = 5.3; (c), (d) Pr = 0.7 in (a),
(c) a porous RB convection cell with φ = 0.86 and (b), (d) a canonical RB convection cell (i.e., φ = 1.00).
Here, the blue areas corresponding to cold plumes and the red areas corresponding to hot plumes.

flatness quantifies the extent of the distribution’s tails and reveal how extreme values deviate from
the mean. Compared to the porous RB cell, the skewness has smaller absolute values near the top
(bottom) regions in the canonical RB cell, indicating that the localized cold falling (hot rising)
plumes has more profound effects in the canonical RB cell. On the other hand, from Figs. 8(a) and
8(b), we can also observe that the temperature PDF is more symmetric for the porous convection at
the heights of 0.25H and 0.75H , which aligns with the lower skewness values seen for temperature
in porous convection. In both canonical and porous RB cells, the skewness values are around zero
at midheight of y = 0.5H [see Figs. 11(a) and 11(c)], indicating almost equal number of hot and
cold plumes flow through the midheight. We can also find that the flatness has much smaller values
in the porous cell than that in the canonical RB cell, as shown in Figs. 11(b) and 11(d). Specifically,
there is a shift towards a Gaussian distribution in the temperature PDF of porous convection as
compared to canonical RB convection, because solid porous matrix impedes both hot and cold
thermal plumes, there are fewer fluids with temperature that deviate from the bulk temperature.
In the canonical RB convection, the differences in skewness and flatness at two Prandtl numbers
can be attributed to the shape of large-scale circulation. The LSC is in the form of a tilted ellipse
at Pr = 5.3, occupying a diagonal position within the convection cell, with two secondary corner
rolls sited along the opposing diagonal. On the other hand, at Pr = 0.7, the LSC appears to be
circular, with four secondary corner vortices present. This elliptical arrangement of the LSC at
Pr = 5.3 results in asymmetric hot (or cold) plumes falling back to the bottom (or top) plate, which
is associated with countergradient heat transfer, thereby creating a more asymmetric temperature
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(a) (b)

(c) (d)

FIG. 13. Time-averaged plume area in the cell as functions of porosity for (a) Pr = 5.3 and (b) Pr = 0.7.
The error bar is calculated based on results from five different realizations of the porous structure at the same
porosity. The averaged vertical profile of plume areas for (c) Pr = 5.3 and (d) Pr = 0.7.

PDF, increasing the skewness. At the heights of countergradient heat transfer, there is an abundance
of cold and hot plumes with temperatures deviating from the bulk temperature, which are found
along the edges of the corner rolls, leading to the peaks in the temperature flatness profile observed
at heights of 0.2H and 0.8H .

To evaluate the spatial and temporal distributions of thermal plumes, we adopt the criteria similar
to those used in Refs. [25,53,54], specifically

|T (x, y, t ) − 〈T 〉x,t | > cTrms,
√

PrRa|v(x, y, t )T (x, y, t )| > cNu (12)

Here, c is an empirical constant, for which a value of c = 1 is chosen. This criterion assumes
that plumes occur in regions of local temperature extremes (either maximum or minimum), and
in areas where local convective heat flux is larger than the spatial and temporal averaged one.
The applicability of this empirical criterion in accurately extracting plume structures within both
canonical and porous convection is evident from Fig. 12.

We calculate the time-averaged plume area within the cell, and plot the plume areas as functions
of porosity. From Figs. 13(a) and 13(b), we can see that with the decrease of porosity, plume areas
generally increase under both Prandtl number conditions. Additionally, we calculate the plume
area along a horizontal line in the fluid phase, and we plot the averaged vertical profile near the
bottom wall in Figs. 13(c) and 13(d). These profiles were averaged over five different realizations
of the porous structure with the same porosity. Just above the thermal boundary layers (y � 0.01H),
we observed more hot plumes within the porous convection cell compared to the canonical cell
at the same height. This observation serves as another evidence indicating that more hot plumes
penetrate the pore throat after detaching from the thermal boundary layers.
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FIG. 14. A typical snapshot of the instantaneous logarithmic thermal energy dissipation rate field for (a),
(b) Pr = 5.3; (c), (d) Pr = 0.7 in (a), (c) a porous RB convection cell with φ = 0.86 and (b), (d) a canonical
RB convection cell (i.e., φ = 1.00).

C. Statistics of thermal energy dissipation rate

A typical snapshot of an instantaneous logarithmic thermal energy dissipation rate field in both
the porous and the canonical RB cell is shown in Fig. 14. Overall, we can observe intense thermal
energy dissipations occur near the top and bottom boundary layers, where falling cold plumes or
rising hot plumes detach from the boundary layers. Besides, we can also observe intense thermal
energy dissipation in the bulk region of the porous RB cell, which is absent in the canonical RB
cell. The reason behind this observation lies in the permeability of the porous media. In the porous
RB cell, plumes can penetrate through the pore throat, leading to the formation of thermal plumes
associated with large amplitudes of thermal energy dissipation rates. It should be noted that we
assume the solid porous matrix is impermeable to heat flux, thus the thermal energy dissipation rate
εT (x) is zero at the location of the solid porous matrix, leading to different distributions of εT (x)
compared to previous study [27].

We further show the time-averaged logarithmic thermal energy dissipation rate field in Fig. 15.
We can see that the contribution of thermal plumes to thermal energy dissipation is filtered out in
both canonical and porous RB convection cells. In the time-averaged field, we only observe intense
thermal energy dissipation occurs near the top and bottom walls, as well as the edge of LSC, where
strong temperature gradients exist. Particularly, in the porous cell, we did not observe a significant
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FIG. 15. Time-averaged logarithmic thermal energy dissipation rate field for (a), (b) Pr = 5.3; (c), (d) Pr =
0.7 in (a), (c) a porous RB convection cell with φ = 0.86 and (b), (d) a canonical RB convection cell (i.e.,
φ = 1.00).

increase in the thermal energy dissipation rate at the fluid-solid interface of the porous matrix, in
contrast to the previous study [27].

We plot the PDFs of thermal energy dissipation rates εT (x f , t ) obtained over the fluid phase in the
cell over time, further normalized by their root-mean-square (rms) values, as shown in Figs. 16(a)
and 16(b). Compared with the canonical RB convection, the PDF tails of porous RB convection are
more extended, indicating an increasing degree of small-scale intermittency in the thermal energy
dissipation field due to the presence of the porous solid matrix. In the figures, we also compared
the PDFs of thermal energy dissipation rates with the solid porous matrix being either permeable
or impermeable to heat flux. We observed that when the porous matrix is impermeable to heat flux
(represented by the red squares), the tails of the PDFs are longer. However, in both scenarios, the
tails of the PDFs for thermal energy dissipation rate exceed those found in canonical RB convection.
This observation suggests that while the solid porous matrix generally enhance small-scale intermit-
tency, the thermal physical property of the porous matrix also influence the behavior of small-scale
intermittency. The PDF of the scalar dissipation rate plays a crucial role in describing turbulent
isothermal and reacting flows. It is common to use a log-normal PDF to characterize the distribution
of dissipation rate values [55]. We further check whether the thermal energy dissipation fields in the
porous RB convection follow a log-normal distribution or a non-log-normal distribution as observed
in previous studies of canonical RB convection [24,25]. In Figs. 16(c) and 16(d), we plot the

093504-18



PORE-SCALE STATISTICS OF TEMPERATURE AND …

(a) (b)

(c) (d)

FIG. 16. (a), (b) Probability density functions (PDFs) of the thermal energy dissipation rate εT (x, t ), and
(c), (d) PDFs of the normalized logarithmic thermal energy dissipation rate log10 εT (x, t ) obtained over the
whole fluid region in the cell at (a), (c) Pr = 5.3 and (b), (d) Pr = 0.7.

PDFs of the normalized logarithmic thermal energy dissipation rate (log10 εT − μlog10 εT )/σlog10 εT .
We can observe clear departures from log normality of the thermal energy dissipation field for
both canonical and porous RB convections, as a result of intermittent local dissipation. Thus, we
conjecture that the non-log-normal distribution for thermal energy dissipation rate is universal for
buoyancy-driven turbulent convection, even in the presence of complex flow geometry.

IV. CONCLUSIONS

In this work, we have conducted pore-scale direct numerical simulations of thermal convective
flow at vigorous convection regime (i.e., the porous Rayleigh number range 105 < Ra∗ < 107) [16].
Our simulation results showed that the solid porous matrix, which is impermeable to both fluid
and heat flux, significantly impacts the plume dynamics in the porous RB cell. In the porous RB
convection, compared to the case of solid porous matrix being permeable to heat flux, the plume
dynamics are less coherent when the solid porous matrix is impermeable to heat flux.

Furthermore, we investigated the statistical properties of temperature and thermal energy dis-
sipation rate in the porous RB cell. We found that the averaged vertical temperature profiles are
almost a constant value, regardless of the porosity of the cell. However, as the porosity decreases,
the mean-square fluctuations of temperature increases, and the absolute values of skewness and
flatness are much smaller in the porous RB cell compared to the canonical RB cell. This indicates
that the flow is less turbulent in the porous media.

Our study also revealed that intense thermal energy dissipation occurs near the top and bottom
walls, as well as in the bulk region of a porous RB cell. We observed that the small-scale thermal
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TABLE II. Simulation details of porous convection. The columns from left to right indicate the following:
the Rayleigh number Ra, the Prandtl number Pr, the grid numbers, the cylinder length d , the cylinder number
Nd , the porosity φ, the Nusselt number Nu for five different realizations of porous structure as well as its mean
value and standard deviation.

Nusselt Number (Nu)

Ra Pr Grids d Nd φ Case#1 Case#2 Case#3 Case#4 Case#5

109 5.3 1200 × 1200 40 126 0.86 58.69 57.07 58.09 58.85 58.80
108 0.88 57.50 58.28 58.20 58.22 56.58
90 0.9 56.18 57.18 57.59 58.05 56.13
72 0.92 54.95 56.30 55.64 56.84 57.45
54 0.94 54.84 55.45 55.54 54.38 56.70
36 0.96 54.17 54.62 54.01 52.59 53.79
18 0.98 52.12 52.18 53.91 51.76 52.42

109 0.7 1200 × 1200 40 126 0.86 52.13 50.48 51.11 49.29 50.20
108 0.88 49.83 52.15 53.29 50.78 50.77
90 0.9 50.22 53.82 56.19 52.47 51.43
72 0.92 51.95 54.79 52.62 51.21 51.48
54 0.94 49.29 54.45 51.27 50.92 48.14
36 0.96 50.44 51.70 49.29 49.07 47.71
18 0.98 44.65 46.80 48.17 48.74 49.08

108 5.3 600 × 600 20 126 0.86 28.66 28.61 29.02 29.29 27.57
108 0.7 600 × 600 20 126 0.86 24.58 24.14 24.44 24.83 24.13
107 5.3 300 × 300 20 32 0.86 14.04 14.56 14.25 13.94 15.18
107 0.7 300 × 300 20 32 0.86 11.85 12.11 12.07 12.28 12.64
106 5.3 150 × 150 20 8 0.86 7.18 7.55 7.98 6.74 7.20
106 0.7 150 × 150 20 8 0.86 7.02 7.71 6.72 6.12 8.23

energy dissipation field is more intermittent in the porous cell compared to the canonical RB
cell. Despite this difference, both cells exhibit a non-log-normal distribution of thermal energy
dissipation rate.

In summary, our pore-scale direct numerical simulations of porous thermal convective flow
provide important insights into the behavior of coupled fluid flow and heat transfer in porous media.
Our findings highlight the impact of the solid porous matrix on the plume dynamics, temperature
profiles, and thermal energy dissipation rate, which are crucial for the development of more accurate
REV-scale models [56].
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APPENDIX: SIMULATION DETAILS OF POROUS CONVECTION

We provide simulation results at Prandtl numbers of Pr = 5.3 and 0.7 and a fixed Rayleigh
number of Ra = 109, the porosity φ range 0.86 � φ � 0.98. In addition, we vary the Ra for
106 � Ra � 109 at two fixed Pr, while φ is fixed as 0.86. Thus, a total of 100 simulations were
carried for porous convection with impermeable solid matrix, and tabulated values on the results are
listed in Table II.
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