
International Journal of Heat and Mass Transfer 201 (2023) 123649

Contents lists available at ScienceDirect

International Journal of Heat and Mass Transfer

journal homepage: www.elsevier.com/locate/hmt

Multi-GPU thermal lattice Boltzmann simulations using OpenACC and

MPI

Ao Xu

a , b , c , ∗, Bo-Tao Li a

a School of Aeronautics, Northwestern Polytechnical University, Xi’an 710072, China
b Institute of Extreme Mechanics, Northwestern Polytechnical University, Xi’an 710072, China
c Key Laboratory of Icing and Anti/De-icing, China Aerodynamics Research and Development Center, Mianyang 6210 0 0, China

a r t i c l e i n f o

Article history:

Received 27 September 2022

Revised 6 November 2022

Accepted 7 November 2022

Available online 16 November 2022

Keywords:

Lattice Boltzmann method

Thermal convective flows

GPU

OpenACC

MPI

a b s t r a c t

We assess the performance of the hybrid Open Accelerator (OpenACC) and Message Passing Interface

(MPI) approach for multi-graphics processing units (GPUs) accelerated thermal lattice Boltzmann (LB)

simulation. The OpenACC accelerates computation on a single GPU, and the MPI synchronizes the infor-

mation between multiple GPUs. With a single GPU, the two-dimension (2D) simulation achieved 1.93

billion lattice updates per second (GLUPS) with a grid number of 8193 2 , and the three-dimension (3D)

simulation achieved 1.04 GLUPS with a grid number of 385 3 , which is more than 76% of the theoretical

maximum performance. On multi-GPUs, we adopt block partitioning, overlapping communications with

computations, and concurrent computation to optimize parallel efficiency. We show that in the strong

scaling test, using 16 GPUs, the 2D simulation achieved 30.42 GLUPS and the 3D simulation achieved

14.52 GLUPS. In the weak scaling test, the parallel efficiency remains above 99% up to 16 GPUs. Our re-

sults demonstrated that, with improved data and task management, the hybrid OpenACC and MPI tech-

nique is promising for thermal LB simulation on multi-GPUs.

© 2022 Elsevier Ltd. All rights reserved.

1

t

p

c

1

i

t

e

h

t

t

b

m

I

w

c

i

e

l

m

s

[

d

t

t

r

l

t

t

i

[

i

h

t

G

s

t

h

0

. Introduction

Over the past half-century, the development of semiconduc-

or transistors has driven rapid growth and prosperity of high-

erformance computing (HPC). The miniaturization of computer

omponents was foreseen by physicist Richard Feynman in his

959 address ”There is Plenty of Room at the Bottom” [1] . Later

n 1975, Gordon Moore, the founder of Intel Corporation, predicted

hat the number of transistors per computer chip would double

very two years, which is known as Moore’s law [2] . This trend

eld up considerably well until recently when transistors reduce

heir physical size and are reaching the atomic scale, implying

hat Moore’s law is nearing its end and is anticipated to flatten

y 2025 [3] . Alternative avenues for growth in computer perfor-

ance include hardware architecture, software, and algorithms [4] .

n the post-Moore era, computer architects should focus on hard-

are streamlining and provide additional chip area for more cir-

uitry to operate in parallel, rather than use more transistors and

ncrease the complexity of processing cores as they used to do. For

xample, the graphics process unit (GPU) contains many parallel
∗ Corresponding author.

E-mail address: axu@nwpu.edu.cn (A. Xu) .

[

[

N

ttps://doi.org/10.1016/j.ijheatmasstransfer.2022.123649

017-9310/© 2022 Elsevier Ltd. All rights reserved.
anes and it can exploit much more parallelism, thus it delivers

uch more performance on computations.

The lattice Boltzmann (LB) method is a numerical approach to

imulate fluid flows and associate heat and mass transfer processes

5,6] . Specifically, the LB method describes the evolution of particle

ensity distribution, which originated from the Boltzmann kinetic

heory but practically reflects hydrodynamic behavior at the con-

inuum scale. Mesoscopic physical pictures can be easily incorpo-

ated into the LB method, and macroscopic physical conservation

aws can be recovered with a relatively low computational cost. Af-

er three decades of development of the LB method, the computa-

ional fluid dynamics community has witnessed its powerful abil-

ty to simulate complex flows, such as gas-liquid two-phase flow

7,8] , particulate flow [9–11] , fluid-structure interaction [12] , flow

n porous media [13] , and so on. Advancements in HPC utilizing

eterogeneous architecture, namely the combined traditional cen-

ral processing unit (CPU) and the emerging accelerators (such as

PUs), further facilitate the application of LB simulations in large-

cale engineering problems [14,15] . Open-source codes based on

he LB method, including OpenLB [16] , Palabos [17] , and Sailfish

18] , even aim to brace the forthcoming Exascale supercomputing

19] . Review articles on LB simulation using GPUs can be found by

avarro-Hinojosa et al. [20] , Niemeyer and Sung [21] .

https://doi.org/10.1016/j.ijheatmasstransfer.2022.123649
http://www.ScienceDirect.com
http://www.elsevier.com/locate/hmt
http://crossmark.crossref.org/dialog/?doi=10.1016/j.ijheatmasstransfer.2022.123649&domain=pdf
mailto:axu@nwpu.edu.cn
https://doi.org/10.1016/j.ijheatmasstransfer.2022.123649

A. Xu and B.-T. Li International Journal of Heat and Mass Transfer 201 (2023) 123649

h

S

c

p

p

w

i

i

s

h

d

t

t

T

n

b

a

s

c

n

a

G

b

O

i

n

g

s

t

w

T

m

p

t

fl

t

[

i

I

u

t

n

G

s

t

a

g

t

m

d

n

s

m

o

2

2

p

t

l

c

a

w

∇

w

t

p

e

t

T

∇

l

t

h

t

R

2

m

a

t

d

fl

i

i

f

fi

(

b

e

′

w

x

i

l

F

a

M
The pioneer works implementing LB simulations on graphics

ardware were achieved by using textures and render buffers [22] .

ince 2007, with the introduction of Compute Unified Device Ar-

hitecture (CUDA), which is a parallel computing platform and ap-

lication programming interface (API), significant advances in ap-

lying LB simulation on GPUs have been made [23–26] . Mean-

hile, the Open Computing Language (OpenCL, initially released

n 2009), which is an open standard for writing programs execut-

ng across the heterogeneous platform, has also accelerated the LB

imulation without being restricted to only running on NVIDIA’s

ardware. For example, Sailfish, an open-source LB solver is built

ynamically at run-time in CUDA or OpenCL [18] . However, these

wo APIs require substantial changes in the original code, thus

hreatening the code’s correctness, portability, and maintainability.

he third accelerating approach is using Open Accelerators (Ope-

ACC), which is a platform-independent, high level and directive-

ased programming standard. The programmers provide hints as

nnotations to the original code, specifying that a certain loop

hould run in parallel on the accelerator, then compute-intensive

alculations are offloaded to the accelerator device without the

eed to explicitly manage data transfers between the host and the

ccelerator. Recently, Open Multi-Processing (OpenMP) support for

PUs is also available. Both OpenACC and OpenMP are directive

ased; the difference is that OpenACC is more descriptive, while

penMP is more prescriptive (using distribute constructs to explic-

tly maps work-loads) [27] .

So far, there are fewer implementations of LB code using Ope-

ACC compared to that using CUDA, primarily due to concerns re-

arding computational efficiency [27–29] . Xu et al. [30] demon-

trated that for thermal flows (e.g., fluid flows and heat transfer in

he side heated cavity), a speedup of around 53X can be achieved

hen using OpenACC acceleration compared with the serial code.

he results were obtained on a single Tesla K20c GPU, and 282.6

illion lattice update per second (MLUPS, defined later in this

aper) were reached for double-precision floating calculation. Al-

hough higher performance could be gained using single-precision

oating calculation [31] , it would pose threats to the accuracy of

he simulation results, particularly for turbulent flow simulations

32] .

To utilize the computing power of multi-node GPU clusters, LB

mplementations based on a hybrid OpenACC and Message Passing

nterface (MPI) approach can be used for massively parallel sim-

lations of problems with larger domain sizes. However, simula-

ions running on multiple GPUs have to face Peripheral Compo-

ent Interconnect Express (PCI-e) bottlenecks and minimize inter-

PU communications. In this work, we address implementation is-

ues when using hybrid MPI and OpenACC to accelerate LB simula-

ions. We show that ultra-high computational performance can be

chieved with proper implementations. The rest of this paper is or-

anized as follows. In Section 2 , we introduce numerical details for

he simulation of thermal convection, including the mathematical

odel and the corresponding LB model. In Section 3 , we present

etails for implementation and optimization of the hybrid Ope-

ACC and MPI, as well the parallel performance measured via the

trong scaling test. In Section 4 , we present parallel performance

easured via the weak scaling test. In Section 5 , the main findings

f this work are summarized.

. Numerical method

.1. Mathematical model for thermal convection

We simulate thermal convection based on the Boussinesq ap-

roximation. We assume the fluid flow is incompressible, and we

reat the temperature as an active scalar that influences the ve-

ocity field through the buoyancy. The viscous heat dissipation and
2
ompression work are neglected, and all the transport coefficients

re assumed to be constants. Then, the governing equations can be

ritten as

 · u = 0 (1a)

∂u

∂t
+ u · ∇u = − 1

ρ0

∇P + ν∇

2 u + gβT (T − T 0) ̂ z (1b)

∂T

∂t
+ u · ∇ T = αT ∇

2 T (1c)

here u , P and T are the velocity, pressure, and temperature of

he fluid, respectively. ρ0 and T 0 are reference density and tem-

erature, respectively. ν , βT and αT denote the viscosity, thermal

xpansion coefficient, and thermal diffusivity of the fluid, respec-

ively. ˆ z is the unit parallel to gravity. With the scaling

x

∗ = x /H, t ∗ = t/
√

H/ (βT g�T) , u

∗ = u /
√

βT gH�T ,

P ∗ = P/ (ρ0 gβT �T H) , T ∗ = (T − T 0) / �T

(2)

hen, Eq. (1) can be rewritten in dimensionless form as

 · u

∗ = 0 (3a)

∂u

∗

∂t ∗
+ u

∗ · ∇ u

∗ = −∇ P ∗ +

√

Pr

Ra
∇

2 u

∗ + T ∗ ˜ z (3b)

∂T ∗

∂t ∗
+ u

∗ · ∇ T ∗ =

√

1

PrRa
∇

2 T ∗ (3c)

Here, H is the cell height and it is chosen as the characteristic

ength. t f =

√

H/ (βT g�T) is the free-fall time and it is chosen as

he characteristic time. �T is the temperature difference between

eating and cooling walls. The two dimensionless parameters are

he Ra and the P r, which are defined as

a =

gβT �T H

3

ναT

, P r =

ν

αT

(4)

.2. The LB model for thermal convection

We adopt the double distribution function (DDF)-based LB

odel to simulate thermal convective flows with the Boussinesq

pproximation [33–36] . Specifically, we chose a D2Q9 discrete lat-

ice in two-dimension (2D) or a D3Q19 discrete lattice in three-

imension (3D) for the Navier–Stokes equations to simulate fluid

ows, and a D2Q5 discrete lattice in 2D or a D3Q7 discrete lattice

n 3D for the energy equation to simulate heat transfer [30,37] , as

llustrated in Fig. 1 . Here, the D2Q5 or D3Q7 model was chosen

or the convection-diffusion equation to pursue computational ef-

ciency.

To enhance the numerical stability, the multi-relaxation-time

MRT) collision operator is adopted in the evolution equations of

oth density and temperature distribution functions. The evolution

quation of the density distribution function is written as

f i (x + e i δt , t + δt) − f i (x , t) = −
(
M

−1 S
)

i j

[
m j (x , t) −m

(eq)
j

(x , t)
]
+ δt F i

(5)

here f i is the density distribution function and i = 0 , 1 , · · · , q − 1 .

 is the fluid plarcel position, t is the time, δt is the time step. e i
s the discrete velocity along the i th direction. For D2Q9 discrete

attice, q = 9 ; for D3Q19 discrete lattice, q = 19 . The forcing term

′
i

on the right-hand side of Eq. (5) is given by F ′ = M

−1
(
I − S

2

)
M ̃

 F ,

nd the term M ̃

 F is given as [38–40]

 ̃

 F D 2 Q9 = [0 , 6 u · F , −6 u · F , F x , −F x , F y , −F y , 2 uF x − 2 v F y , uF x + v F y] T

(6a)

A. Xu and B.-T. Li International Journal of Heat and Mass Transfer 201 (2023) 123649

Fig. 1. Illustration of discrete velocity models: (a) the D2Q9 model and (b) the D2Q5 model for two-dimensional simulations; (c) the D3Q19 model and (d) the D3Q7 model

for three-dimensional simulation.

M

w

m∑
n

w

n

n

e

i

g

w

0

l

T

b

b

t

D

m

w

n

d

v

b

2

r

t

c

b

F

R

b

t

s

fi

s

t

c

a

a

f

r

w

a

t

s

r

o

i

M

f

 ̃

 F D 3 Q19 =

[
0 , 38 u · F , −11 u · F , F x , − 2

3
F x , F y , − 2

3
F y , F z , − 2

3
F z ,

4 uF x − 2 v F y − 2 wF z , −2 uF x + v F y + wF z , 2 v F y − 2 wF z ,

−v F y + wF z , uF y + v F x , v F z + wF y , uF z + wF x , 0 , 0 , 0]
T

(6b)

here F = ρgβT (T − T 0) ̂ y in 2D or F = ρgβT (T − T 0) ̂ z in 3D. The

acroscopic density ρ and velocity u are obtained from ρ =

 q −1
i =0

f i , u =

(∑ q −1
i =0

e i f i +

1
2 F

)
/ρ . At the fluid-solid boundary, the

o-slip velocity boundary condition can be realized via the half-

ay bounce-back scheme f
ī (x , t + δt) = f +

i
(x , t) . Here, f +

i
(x , t) de-

otes the post-collision density distribution function; f
ī
(x , t) de-

otes the density distribution function associated with the velocity

ī
, and we have the relation e

ī
= −e i .

The evolution equation of the temperature distribution function

s written as

 i (x + e i δt , t + δt) − g i (x , t) = −
(
N

−1 Q

)
i j

[
n j (x , t) − n

(eq)
j

(x , t)
]
(7)

here g i is the temperature distribution function and i =

 , 1 , · · · , q − 1 . For D2Q5 discrete lattice, q = 5 ; for D3Q7 discrete

attice, q = 7 . The macroscopic temperature T is obtained from

 =

∑ q −1
i =0

g i . At the fluid-solid boundary, the Dirichlet temperature

oundary condition can be realized via the half-way anti-bounce-

ack scheme g
ī (x , t + δt) = −g +

i
(x , t) + ωT w

, where T w

is the wall

emperature, ω = (4 + a T) / 10 for D2Q5 and ω = (6 + a T) / 21 for

3Q7, a T is a constant related to thermal diffusivity [41] ; the Neu-

ann adiabatic boundary condition can be realized via the half-

ay bounce-back scheme g
ī (x , t + δt) = g +

i
(x , t) . Here, g +

i
(x , t) de-

otes the post-collision temperature distribution function; g
ī
(x , t)

enotes the temperature distribution function associated with the

elocity e
ī
. More numerical details of the thermal LB method can

e found in our previous work [30,37] .
3
.3. Simulation settings and parallel performance characterization

We consider a 2D square cell and a 3D cubic cell. The left and

ight walls of the cell are kept at constant hot and cold tempera-

ures, respectively; while the other two (or four) walls of the 2D

ell (or the 3D cell) are adiabatic; all walls impose no-slip velocity

oundary conditions. We fixed the Prandtl number as P r = 0 . 71 .

or the 2D thermal convection, the Rayleigh number is fixed as

a = 10 8 ; while for the 3D thermal convection, the Rayleigh num-

er is fixed as Ra = 10 7 . Previously, we obtained a steady flow pat-

ern in these two cases [30,37] ; while at higher Ra , the flow tran-

its to an unsteady state, and a Hopf bifurcation occurs. We veri-

ed the multi-GPU implementation can give correct simulation re-

ults consistent with our previous results [30,37] (see Fig. 2 for the

emperature field in the convection cell); however, for the sake of

larity, we do not repeat to provide the tabulated flow quantities

nd heat transfer properties. In the following, we focus on the par-

llel performance of the multi-GPU simulation.

In the strong scaling test, we measure the running time as a

unction of GPU numbers for fixed total problem size, which rep-

esents the ability to solve a problem faster using more resources;

hile in the weak scaling test, we measure the running time as

 function of GPU numbers for fixed problem size per GPU (i.e.,

he total problem size increases), which represents the ability to

olve larger problems with larger resources. We adopt two met-

ics to characterize the parallel performance of the LB simulation,

ne is Million Lattice Updates Per Second (MLUPS) and the other

s parallel efficiency. The MLUPS is defined as [42]

MLUPS =

mesh size × iteration steps

running time × 10

6
(8)

eanwhile, we have 1 GLUPS = 10 0 0 MLUPS, where GLUPS stands

or billion lattice updates per second. In the strong scaling test, the

A. Xu and B.-T. Li International Journal of Heat and Mass Transfer 201 (2023) 123649

Fig. 2. The temperature field in the convection cell: (a) the 2D simulation and (b) the 3D simulation.

p

η

H

n

t

c

e

A

p

E

g

e

O

a

r

n

a

s

f

t

t

2

s

d

t

b

b

w

p

s

s

n

n

c

t

t

s

3

a

3

h

a

i

fl

l

t

C

S

t

C

S

n

h

r

s

f

g

t

t

q

t

t

o

2

x

p

f

p

t

g

m

3

t

u

t

c

o

a

p

i

arallel efficiency η is defined as

=

T 1
T n · n

(9)

ere, T 1 denotes the running time using a single GPU and T n de-

otes the running time using n GPUs. In the weak scaling test,

he parallel efficiency η is simply calculated as η = T 1 /T n . We

onducted experiments on a four-node GPU cluster, each node is

quipped with four NVIDIA A100 GPUs powered by the NVIDIA

mpere Architecture. The network interconnects use 100 Gigabits

er second (Gbps) Remote direct memory access over Converged

thernet (RoCE). The inter-GPU-GPU communication within a node

oes over the PCI-e. To automatically utilize the GPUDirect accel-

ration technologies, we adopt a CUDA-aware MPI implemented in

penMPI. With GPUDirect technology, including Peer to Peer (P2P)

nd Remote Direct Memory Access (RDMA), the buffers can be di-

ectly sent from a GPU memory to another GPU memory or the

etwork without touching the host memory [43] .

We measure the running time and then calculate the MLUPS

nd parallel efficiency. In Section 3 , we describe optimization

trategies for multi-GPU simulation and evaluate the parallel per-

ormance via the strong scaling test; then, in Section 4 , we fur-

her discuss the parallel performance via the weak scaling test. In

he strong scaling test, we fix a grid number of 8193 × 8193 in the

D simulation and a grid number of 385 × 385 × 385 in the 3D

imulation. Here, we use an odd number of grid points in each

imension for two reasons: first, it reduces the oscillations due

o spurious conserved quantities [44] ; secondly, for a grid num-

er of N in each dimension, it allows the [(N + 1) / 2] th point to

e precisely located at the center line (plane) based on the half-

ay (anti-)bounce-back boundary scheme, which is convenient for

ost-analysis of flow and heat transfer quantities. The iteration

teps are fixed as 12,0 0 0 and 60 0 0, respectively, for the 2D and 3D

imulations. Preliminary tests showed that the corresponding run-

ing time was around 30 seconds with 16 GPUs (i.e., the largest

umber of GPUs in the tests), which ensures the measurement of

omputing performance enters a steady state. Detailed settings for

he weak scaling test are described in Section 5 . All the simula-

ions adopt double-precision floating-point arithmetic, which en-

ures the simulation accuracy.

. Implementation and optimization of the hybrid OpenACC

nd MPI approach

.1. Naive implementation of hybrid OpenACC and MPI approach

To utilize the computing power of GPU clusters, we use the

ybrid OpenACC and MPI approach, in which OpenACC acceler-

tes the computation on a single GPU and MPI synchronizes the
4
nformation between multiple GPUs. In Fig. 3 (a), we present the

owchart of the DDF-based LB model for thermal convection prob-

ems. Here, we split the evaluation of the density distribution func-

ion (i.e., Eq. (5)) into the following two steps

ol l ision step : f +
i
(x , t) = f i (x , t) −

(
M

−1 S
)

i j

[
m j (x , t) −m

(eq)
j

(x , t)
]
+ δt F

′
i

(10a)

treaming step : f i (x + e i δt , t + δt) = f +
i
(x , t) (10b)

Similarly, we split the evaluation of the temperature distribu-

ion function (i.e., Eq. (7)) into two steps as

ol l ision step : g +
i
(x , t) = g i (x , t) −

(
N

−1 Q

)
i j

[
n j (x , t) −n

(eq)
j

(x , t)
]

(11a)

treaming step : g i (x + e i δt , t + δt) = g +
i
(x , t) (11b)

In the collision step, we can use the symbol �i (x , t) to de-

ote the collision operator, which is the second term on the right-

and side of the equation. The collision step is also known as the

elaxation step and it completely updates local information; the

treaming step is also known as the propagation step and it trans-

ers data information to its neighboring. Because GPUs adopt sin-

le instruction multiple threads (SIMT) execution model, we op-

imized the data layout for the distribution function and stored

he information in the structure of array (SoA) to meet the re-

uirement of coalescing memory access, such that neighboring

hreads access neighboring data. For example, the density distribu-

ion function f i (x , t) is stored with index (x + N x × y + N x × N y × i)

r (x + N x × y + N x × N y × z + N x × N y × N z × i) , respectively, for the

D or 3D case. Here, N x , N y , and N z denote the grid number in the

 , y , and z directions, respectively. Using the column-major order

rogramming language (such as Fortran), the corresponding index

ormula implementation is f (x, y, i) or f (x, y, z, i) [30] .

In a naive implementation of the hybrid OpenACC and MPI ap-

roach, we adopt a mono-dimensional partitioning of the compu-

ational domain. Take the column-major order programming lan-

uage (such as Fortran) as an example, we decompose the do-

ain along the y -direction (or the z-direction) in the 2D (or the

D) domain, then the interface between the subdomains is along

he x -direction line (or the x − y plane), which favors the contin-

ous transfer data in memory space. We add ghost layers outside

he boundary of each subdomain to receive data from the adja-

ent subdomains, as illustrated in Fig. 3 (b). To reduce the amount

f data transfer, in the streaming step, we do not transfer the full

rray of the distribution function f +
i

(x) or g +
i
(x) , but only com-

onents of these arrays corresponding to specific discrete veloc-

ty directions. For example, using the D2Q9 discrete lattice for the

A. Xu and B.-T. Li International Journal of Heat and Mass Transfer 201 (2023) 123649

Fig. 3. (a) Flowchart of double distribution function (DDF)-based lattice Boltzmann (LB) model for thermal convection simulation; (b) mono-dimensional partitioning of the

2D computation domain and the associated data exchange.

Fig. 4. Performanc of (a, c) the 2D simulation and (b, d) the 3D simulation, in terms of (a, b) the MLUPS and (c, d) the parallel efficiency.

d

p

s

u

t

t

s

b

r

G

p

r

s

u

t

a

p

g

ensity distribution function and D2Q5 discrete lattice for the tem-

erature distribution function, the current GPU [the corresponding

ubdomain is marked by orange color in Fig. 3 (b)] only sends val-

es of f +
2 , 5 , 6

(x) and g +
2
(x) [these are distribution functions belong

o the top boundary of the subdomain, see the red rectangle with

he solid line in Fig. 3 (b)] to the top neighbor GPU, while it only

ends values of f +
4 , 7 , 8

(x) and g +
4
(x) [these are distribution functions

elong to the bottom boundary of the subdomain, see the blue

ectangle with the solid line in Fig. 3 (b)] to the bottom neighbor
PU. t

5
Fig. 4 shows the parallel performance in terms of MULPS and

arallel efficiency for the 2D simulation and the 3D simulation,

espectively. We can see that using 1 GPU, the 2D thermal LB

imulation achieves 1931.2 MLUPS, and the 3D thermal LB sim-

lation achieves 1042.4 MLUPS. We note in the D2Q9 + D2Q5

hermal LB model, each grid node accesses 80 variables within

n iteration step and these variables occupy 8 bytes in double-

recision; while in the D3Q19 + D3Q7 thermal LB model, each

rid node accesses 143 variables within an iteration step. Because

he NVIDIA A100 has a memory bandwidth of 1555 GB/s, the

A. Xu and B.-T. Li International Journal of Heat and Mass Transfer 201 (2023) 123649

Fig. 5. Illustration of block partitioning and data exchange for the 2D domain.

t

1

t

s

t

w

e

m

p

p

t

m

c

a

t

a

A

t

s

c

o

G

t

t

3

i

s

b

t

i

d

Table 1

Partition details of the domain in 2D and 3D.

GPU numbers Partition type in 2D partition type in 3D

1 - -

2 1 × 2 1 × 1 × 2

4 2 × 2 1 × 2 × 2

8 2 × 4 2 × 2 × 2

16 4 × 4 2 × 2 × 4

t

i

t

m

d

f

w

f

a

c

i

w

s

t

t

M

M

c

T

c

i

s

s

p

hermal LB simulation has a theoretical maximum performance of

555 × 10 0 0 3 / (80 × 8 × 10 6) = 2429 . 7 MLUPS for the 2D simula-

ion, and 1555 × 10 0 0 3 / (143 × 8 × 10 6) = 1359 . 3 MLUPS for the 3D

imulation. In other words, we have reached 79.5% and 76.7% of

he theoretical maximum performance, similar to that of the Sun-

ayLB [14] . With the increase of GPU numbers, the MULPS gen-

rally increases; however, the parallel efficiency degrades when

ore GPUs are used, particularly for the 3D case in which the

arallel efficiency is less than 57% using 16 GPUs, indicating the

arallel code is not scalable. Two reasons may be responsible for

he poor parallel performance. First, in the strong scaling measure-

ent, the computational load on each GPU decreases with the in-

rease of GPU numbers; however, the communication cost per GPU

lmost remains the same. Adopting the mono-dimensional parti-

ioning, the amount of data that needs to be transferred is 2 × N x

nd 2 × N x × N y , respectively, for the 2D and the 3D simulation.

s a result, the ratio between communication time and the total

ime increases with the increase of GPU numbers, restricting the

calability of the code. Secondly, if the grid number of the whole

omputation domain is not large enough, the computational load

n each GPU is not sufficient to fully occupy the resources of that

PU, and the overhead to launch kernel matters. To further boost

he parallel performance using multi-GPUs, we describe some op-

imization strategies in the following subsections.

.2. Block partitioning of the computational domain

In mono-dimensional partitioning, the computational domain

s decomposed into several slices and each slice is allocated to a

ingle GPU. An alternative strategy for domain decomposition is

lock partitioning, which is to decompose the domain in more

han one dimension [45,46] . Fig. 5 illustrates the block partition-

ng and data exchange for the 2D domain. We decompose the

omain both along the x and the y directions, and we minimize
6

he differences in the subdomain size along each dimension. Us-

ng the column-major order programming language (such as For-

ran), the data is stored continuously along the x -direction in the

emory space, we preferably decompose the domain along the y -

irection (in 2D) or the z-direction (in 3D). The partition details

or the domain in 2D and 3D are provided in Table 1 . After that,

e add ghost layers to each subdomain to store the data received

rom adjacent subdomains. Using Fortran, we need to wrap the left

nd right boundary nodes along the y-direction into a contiguous

ache space before sending them to its left and right neighbor-

ng GPUs (see the nodes in the light blue and purple rectangles

ith solid lines in Fig. 5). Here we also included ghost nodes out-

ide the subdomain boundaries when sending the message, such

hat data for the corner points can be implicitly synchronized and

ransferred to the diagonally neighboring GPUs. With CUDA-aware

PI libraries implemented in OpenMPI, we discourage the use of

PI-derived datatypes for data communication, even though both

ontiguous and non-contiguous derived datatypes are supported.

he non-contiguous datatypes currently have a high overhead be-

ause of the many calls to copy all the pieces of the buffer into the

ntermediate buffer. Previously, Calore et al. [47] overcame this is-

ue by developing a custom communication library that uses per-

istent send and receives buffers, allocated once on the GPUs at

rogram initialization. Here, we recommend an alternative solu-

A. Xu and B.-T. Li International Journal of Heat and Mass Transfer 201 (2023) 123649

Fig. 6. Performanc comparisons between mono-dimensional and block partitioning of the computational domain for (a, c) the 2D simulation and (b, d) the 3D simulation,

in terms of (a, b) the MLUPS and (c, d) the parallel efficiency.

t

m

p

W

M

i

t

a

t

s

d

n

c

i

i

b

n

t

k

c

t

t

g

T

m

w

s

3

t

w

t

b

c

c

c

o

c

h

b

o

c

b

o

n

q

h

L

c

a

a

m

f

D

v

d

i

a

a

i

g

c

a

r

h

F

s

t i i
ion that simply put the ghost nodes into a buffer of contiguous

emory locations.

Fig. 6 compares the performance between mono-dimensional

artitioning and block partitioning of the computational domain.

e can see that adopting block partitioning can improve the

LUPS and parallel efficiency for the 3D simulations, however,

t slightly degrades the parallel performance for the 2D simula-

ions. In the following, we provide a theoretical analysis of the

dvantages and disadvantages of adopting block partitioning. For

he 2D computational domain with size N x × N y , we assume a

quare domain of N x = N y = N for simplicity. Adopting the mono-

imensional partitioning, each GPU sends 2 N boundary nodes to its

eighboring GPUs, and it launches two kernels for data communi-

ations on the two boundaries; while adopting the block partition-

ng, each GPU sends 4(N/
√

a + 2) boundary nodes to its neighbor-

ng, and it launches four kernels for data commutations on the four

oundaries. Here, for simplicity, we discuss the case when the GPU

umber a meets the requirement that
√

a is an integer. We denote

hat the time consumption for sending a single boundary node is

 , and the time consumption to launch a kernel for data communi-

ation is h . Thus, for mono-dimensional and block partitioning, the

otal time consumption for message passing, which includes the

ime for sending data and the time to launch a kernel, on a sin-

le GPU is t 1 = 2 kN + 2 h and t 2 = 4(N/
√

a + 2) k + 4 h , respectively.

he above analysis indicates that the block partitioning would be

ore efficient when t 1 > t 2 , i.e., 2 kN − 4 Nk/
√

a > 2 h + 8 k ; in other

ords, we prefer to use block partitioning when both the domain

ize N and the GPU number a are large.

.3. Overlapping communications with computations

Minimizing the communication overhead is crucial to improve

he parallel performance of the simulations based on multi-GPUs,

e further hide communication overhead behind the kernel run-

ime by overlapping the communications with computations. The

asic idea is to simultaneously execute kernels on GPUs for intense
7
omputation and data communications among GPUs, because GPUs

annot control data transfer and only CPUs can manage the data

ommunication. On devices with distinct hosts and device mem-

ry, we can create asynchronous work queues to deal with the

ost of PCIe data transfers. Practically, we can adopt the !$acc async

andle in OpenACC. As illustrated in Fig. 7 (a), we first update the

oundary nodes and put them into buffers of contiguous mem-

ry. We then create asynchronous work queues to perform intense

omputation for updating inner nodes, while synchronizing data of

oundary nodes among various GPUs using MPI. Thus, the latency

f communication can be hidden behind the computations. The

ext task will not begin execution until all actions on the async

ueues are complete, which can be realized using the !$acc wait

andle in OpenACC. In Fig. 7 (b), we give an example of the thermal

B model for overlapping communications with computations. Be-

ause the evolution of density distribution function f i and temper-

ture distribution function g i are independent of each other within

n iteration, we can update f i and g i alternatively to hide the com-

unication overhead. Meanwhile, the amount of data computation

or f i is larger than that for g i , since there are 5 components of

f i for the D3Q19 discrete lattice and 1 component of g i for the

3Q7 discrete lattice on a surface of the subdomain, we then di-

ide the communication of f i into three sets: f x representing the

ensity distribution at the back and front surfaces, f y represent-

ng the density distribution function at the left and right surfaces,

nd f z representing the density distribution function at the bottom

nd top surfaces. As illustrated in Fig. 7 (b), we first relax g i at the

nner nodes while communicating f z . After that, we communicate

 i at the boundary nodes while relaxing f i at the inner nodes. Be-

ause the relaxation of f i is the most time-consuming subroutine,

s evident by the results obtained via NVIDIA Nsight Systems and

epresented by the box size in the illustration drawing, we can also

ide the communication of f y while relaxing f i at the inner nodes.

or the communication of f x , it can be hidden by the propagation

tep of g i and the step to calculate macroscopic variables of T . Now

hat the data communication for f and g at the boundary nodes

A. Xu and B.-T. Li International Journal of Heat and Mass Transfer 201 (2023) 123649

Fig. 7. Schematic illustration of (a) the basic idea to overlap communications with computations in OpenACC and (b) an example in the thermal LB model for overlapping

communications with computations. The size of the box to represent each computation subroutine is generally proportional to its time consumption (obtained via NVIDIA

Nsight Systems). The bounce-back routines updating the distribution functions at boundaries are neglected because they account for less than 1% of the total time.

Fig. 8. Performanc comparisons between non-overlapping and overlapping communication with computation for (a, c) the 2D simulation and (b, d) the 3D simulation, in

terms of (a, b) the MLUPS and (c, d) the parallel efficiency.

a

l

p

l

M

c

o

o

p

m

d

p

c

l

X

w

1

t

d

3

f

i

f

e

F

w

t

q

o

e

t

re completed within an iteration step, we do not have to over-

ap communications for the remaining computation subroutines of

ropagation f i and calculation macroscopic variables of u and ρ .

Fig. 8 compares the performance of non-overlapping and over-

apping communication with computation. We can see that the

LUPS and parallel efficiency improved for all the cases if the

ommunications and computations overlapped, and the advantage

f using the overlapping mode is more obvious with the increase

f GPU numbers. For the 3D simulations, the performance im-

rovement is greater than that in the 2D simulations, because

ore time for data transfer between GPU communication is hid-

en. Excitingly, for the 3D simulation, the parallel efficiency im-

roves from 78.7% to 97.1% when using 8 GPUs, and the MLUPS in-

reases by 1.28X when using 16 GPUs. Previously, using the over-

apping mode implemented in a hybrid CUDA and MPI approach,

ian and Takayuki [48] reported the MLUPS increased by 1.24X

ith 16 GPUs, Hong et al. [49] reported the MLUPS increased by

.38X with 6 GPUs, suggesting a similar amount of increase in
a

8
he parallel performance even though we adopt the high level and

irective-based OpenACC standard.

.4. Concurrent computation on a GPU

In addition to data parallelism, exploiting task parallelism can

urther utilize the GPU hardware resources, particularly when us-

ng a large number of GPUs, the computational tasks may not

ully occupy the resources of the GPU, and we can concurrently

xecute two independent tasks on a single GPU, as illustrated in

ig. 9 (a). Practically, we can adopt the !$acc async (n) handle,

hich launches work asynchronously in queue n . All operations in

he same queue will execute in order, while operations in different

ueues may execute in any order. In Fig. 9 (b), we give an example

f the thermal LB model for concurrent computation. Because the

volution of density distribution function f i and temperature dis-

ribution function g i are independent of each other within an iter-

tion, we can also update f and g in different queues. It should be
i i

A. Xu and B.-T. Li International Journal of Heat and Mass Transfer 201 (2023) 123649

Fig. 9. Schematic illustration of (a) the basic idea of concurrently executing two independent tasks in OpenACC and (b) an example in the thermal LB model for concurrent

computation.

Fig. 10. Performanc comparisons between non-concurrent and concurrent computation for (a, c) the 2D simulation and (b, d) the 3D simulation, in terms of (a, b) the MLUPS

and (c, d) the parallel efficiency.

n

b

c

t

t

F

c

e

a

G

a

t

i

a

s

t

4

8

s

3

o

o

t

S

M

0

r

a

r

t

oted that the data communication at the boundary nodes should

e performed before the propagation step. Here, following the dis-

ussion in Section 3.3 , we divide the communication of f i into

hree sets, and we overlap the communication of f i and g i [see

he blue box in Fig. 9 (b)] with computation [see the green box in

ig. 9 (b)].

Fig. 10 compares the performance of non-concurrent and con-

urrent computation. We can see the MLUPS and the parallel

fficiency slightly improves. Using 16 GPUs, the 2D simulation

chieved 30.42 GLUPS, and the 3D simulation achieved 14.52

LUPS. An interesting finding is that for the 2D simulation, the par-

llel efficiency may even be greater than 100%, which may be due

o the efficient use of the on-chip memory on the GPU, highlight-

ng the advantage of exploiting task parallelism. Due to the high

bility of GPU for computation, the GPU performance for the 3D

imulation can be further boosted with the increasing of computa-

ional load.
9
. Weak scaling test

In the weak scaling test, we use a sub-domain size of 8192 ×
192 and 384 × 384 × 384 in the 2D and the 3D simulation, re-

pectively; the iteration steps are fixed as 10 0 0 (in 2D) and 500 (in

D). Each dimension of the domain size increases similarly to that

f increasing in GPU numbers (see Table 1 for the partition details

f the domain). For simplicity, we only provide the performance of

he code after adopting all the optimization strategies described in

ection 3 . As shown in Fig. 11 , using 1 GPU, we can achieve 1932.9

LUPS and 1045.3 MLUPS in the 2D and 3D simulation (less than

.3% deviation from that in the strong scaling test due to different

uns), respectively. With the increase of GPU numbers, the MLUPS

lmost increases linearly up to 16 GPUs, and the parallel efficiency

emains above 99%. These results demonstrate that the optimized

hermal LB code has excellent weak scalability.

A. Xu and B.-T. Li International Journal of Heat and Mass Transfer 201 (2023) 123649

Fig. 11. Weak scaling test: performance of (a, c) the 2D simulation and (b, d) the 3D simulation, in terms of (a, b) the MLUPS and (c, d) the parallel efficiency.

Fig. 12. Comparison of the parallel performance on CPUs versus GPUs for (a) the 2D simulation and (b) the 3D simulation in terms of the MLUPS. The gray-dashed lines

denote the MLUPS on a single GPU. The total number of CPU cores is N 1 × N 2 , where N 1 is the number of MPI processes and N 2 is the number of OpenMP threads per MPI

process. Here, we fix N 2 as 14 and N 1 increases from 2 to 64.

5

p

O

s

t

D

3

t

3

b

p

w

h

s

t

m

t

n

c

n

b

a

p

s

G

s

G

b

s

d

n

D

a

fi

. Conclusions

In this work, we have adopted a hybrid OpenACC and MPI ap-

roach for accelerated thermal LB simulation on multi-GPUs. The

penACC accelerates computation on a single GPU, and the MPI

ynchronizes the information between multiple GPUs. We adopt

he double distribution function-based thermal LB model, namely,

2Q9 + D2Q5 in the 2D simulation, and D3Q19 + D3Q7 in the

D simulation. With a single NVIDIA A100 GPU, the 2D simula-

ion achieved 1.93 GLUPS with a grid number of 8193 2 and the

D thermal LB simulation achieves 1.04 GLUPS with a grid num-

er of 385 3 , which is more than 76% of the theoretical maximum

erformance. In a naive implementation to extend to multi-GPUs,

e used mono-direction partitioning of the computation domain,

owever, the code was not scalable to more than 8 GPUs in the 3D

imulation. To further boost the parallel performance, we adopted

hree optimization strategies: block partitioning, overlapping com-

unications with computations, and concurrent computation.

With block partitioning, the domain is decomposed in more

han one dimension, and it decreases the amount of data that
10
eeds to be transferred. By overlapping the communications with

omputations, communication overhead is hidden behind the ker-

el runtime. Using concurrent computation, task parallelism can

e exploited to better utilize the GPU hardware resources. After

dopting these optimization strategies, we demonstrate that the

arallel performance can be significantly improved. In the strong

caling test, using 16 GPUs, the 2D simulation achieved 30.42

LUPS and the 3D simulation achieved 14.52 GLUPS. In the weak

caling test, the parallel efficiency remains above 99% up to 16

PUs. It should be noted that all performance measurements are

ased on double-precision floating-point arithmetic, which ensures

imulation accuracy. Our results demonstrated that, with improved

ata and task management, the hybrid OpenACC and MPI tech-

ique is promising for thermal LB simulation on multi-GPUs.

eclaration of Competing Interest

We confirm that the manuscript has been read and approved by

ll named authors and that there are no other persons who satis-

ed the criteria for authorship but are not listed. We further con-

A. Xu and B.-T. Li International Journal of Heat and Mass Transfer 201 (2023) 123649

fi

a

C

W

P

V

o

D

A

F

1

i

N

p

h

p

A

v

a

c

v

c

t

t

O

b

o

c

(

n

c

d

t

t

a

v

b

b

s

a

R

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[
rm that the order of authors listed in the manuscript has been

pproved by all of us.

RediT authorship contribution statement

Ao Xu: Conceptualization, Software, Formal analysis, Resources,

riting – original draft, Writing – review & editing, Supervision,

roject administration, Funding acquisition. Bo-Tao Li: Software,

alidation, Formal analysis, Investigation, Data curation, Writing –

riginal draft, Visualization.

ata Availability

Data will be made available on request.

cknowledgments

This work was supported by the National Natural Science

oundation of China (NSFC) through Grant Nos. 11902268 and

2272311 , the Open Fund of Key Laboratory of Icing and Anti/De-

cing (Grant No. IADL20200301). and the National Key Project via

o. GJXM92579, The authors acknowledge the Beijing Beilong Su-

er Cloud Computing Co., Ltd for providing HPC resources that

ave contributed to the research results reported within this pa-

er (URL: http://www.blsc.cn/).

ppendix A. Comparison of the parallel performance on CPUs

ersus GPUs

In the appendix, we summarize the MLUPS of the GPU code

dopting the optimization strategies discussed in Section 3 . As a

omparison, we provide the MLUPS of a CPU code, which is de-

eloped with a hybrid MPI and OpenMP approach [50] . The CPU

ode is based on a hierarchical two-level parallelization, where

he first-level parallelization applies MPI domain decomposition to

he simulation domain, and the second-level parallelization uses

penMP parallel regions for loops within a subdomain. Such a hy-

rid MPI + OpenMP approach can reduce the memory usage and

verhead associated with MPI calls. For experiments on the CPU

luster, each node is equipped with two Intel Xeon 6258R CPUs

i.e., 56 cores within a node), we assign 4 MPI processes on each

ode with 14 OpenMP threads per MPI process. This choice is a

ompromise between two factors: first, more OpenMP threads re-

uces the corresponding number of MPI processes, which leads

o better communication performances; secondly, more OpenMP

hreads increases the overhead associated with OpenMP constructs

nd remote memory accesses across sockets. For all the cases in-

estigated, our test results showed that on each node, the com-

ination of 4 MPI processes × 14 OpenMP threads works slightly

etter than that of 7 MPI processes × 8 OpenMP threads. We can

ee from Fig. 12 that in the strong scaling test, both our CPU code

nd GPU code scale well.

eferences

[1] R.P. Feynman, Plenty of room at the bottom, APS Annual Meeting, 1959 .

[2] G.E. Moore, et al., Progress in digital integrated electronics, in: Electron Devices

Meeting, Vol. 21, 1975, pp. 11–13 . Washington, DC
[3] J. Shalf, The future of computing beyond Moore’s law, Philos. Trans. R. Soc.

A-Math. Phys. Eng. 378 (2166) (2020) 20190061 .
[4] C.E. Leiserson, N.C. Thompson, J.S. Emer, B.C. Kuszmaul, B.W. Lampson,

D. Sanchez, T.B. Schardl, There’s plenty of room at the top: what will
drive computer performance after Moore’s law? Science 36 8 (64 95) (2020) .

Eaam9744
[5] S. Chen, G.D. Doolen, Lattice Boltzmann method for fluid flows, Annu. Rev.

Fluid Mech. 30 (1) (1998) 329–364 .

[6] C.K. Aidun, J.R. Clausen, Lattice-Boltzmann method for complex flows, Annu.
Rev. Fluid Mech. 42 (2010) 439–472 .

[7] P. Cheng, X. Quan, S. Gong, X. Liu, L. Yang, Recent analytical and numerical
studies on phase-change heat transfer, in: Advances in Heat Transfer, Vol. 46,

Elsevier, 2014, pp. 187–248 .
11
[8] Q. Li, K.H. Luo, Q. Kang, Y. He, Q. Chen, Q. Liu, Lattice Boltzmann methods for
multiphase flow and phase-change heat transfer, Prog. Energy Combust. Sci. 52

(2016) 62–105 .
[9] M. Maxey, Simulation methods for particulate flows and concentrated suspen-

sions, Annu. Rev. Fluid Mech. 49 (2017) 171–193 .
[10] S. Tao, L. Wang, Q. He, J. Chen, J. Luo, Lattice Boltzmann simulation of com-

plex thermal flows via a simplified immersed boundary method, J. Comput.
Sci. (2022) 101878 .

[11] Q. Xiong, B. Li, G. Zhou, X. Fang, J. Xu, J. Wang, X. He, X. Wang, L. Wang,

W. Ge, et al., Large-scale DNS of gas–solid flows on mole-8.5, Chem. Eng. Sci.
71 (2012) 422–430 .

[12] C. Xu, X. Liu, K. Liu, Y. Xiong, H. Huang, A free flexible flap in channel flow, J.
Fluid Mech. 941 (2022) A12 .

[13] Y.-L. He, Q. Liu, Q. Li, W.Q. Tao, Lattice Boltzmann methods for single-phase
and solid-liquid phase-change heat transfer in porous media: a review, Int. J.

Heat Mass Transf. 129 (2019) 160–197 .

[14] Z. Liu, X. Chu, X. Lv, H. Meng, S. Shi, W. Han, J. Xu, H. Fu, G. Yang, SunwayLB:
Enabling extreme-scale lattice Boltzmann method based computing fluid dy-

namics simulations on sunway taihulight, in: 2019 IEEE International Parallel
and Distributed Processing Symposium (IPDPS), IEEE, 2019, pp. 557–566 .

[15] G. Falcucci, G. Amati, P. Fanelli, V.K. Krastev, G. Polverino, M. Porfiri, S. Succi,
Extreme flow simulations reveal skeletal adaptations of deep-sea sponges, Na-

ture 595 (7868) (2021) 537–541 .

[16] M.J. Krause, A. Kummerländer, S.J. Avis, H. Kusumaatmaja, D. Dapelo, F. Kle-
mens, M. Gaedtke, N. Hafen, A. Mink, R. Trunk, J.E. Marquardt, M.-L. Maier,

M. Haussmann, S. Simonis, OpenLB–open source lattice Boltzmann code, Com-
put. Math. Appl. 81 (2021) 258–288 .

[17] J. Latt, O. Malaspinas, D. Kontaxakis, A. Parmigiani, D. Lagrava, F. Brogi,
M.B. Belgacem, Y. Thorimbert, S. Leclaire, S. Li, F. Marson, J. Lemus, C. Kotsalos,

R. Conradin, C. Coreixas, R. Petkantchin, F. Raynaud, J. Beny, B. Chopard, Pala-

bos: parallel lattice Boltzmann solver, Comput. Math. Appl. 81 (2021) 334–350 .
[18] M. Januszewski, M. Kostur, Sailfish: a flexible multi-GPU implementation of the

lattice Boltzmann method, Comput. Phys. Commun. 185 (9) (2014) 2350–2368 .
[19] G. Amati, S. Succi, P. Fanelli, V.K. Krastev, G. Falcucci, Projecting LBM perfor-

mance on exascale class architectures: a tentative outlook, J. Comput. Sci. 55
(2021) 101447 .

20] O. Navarro-Hinojosa, S. Ruiz-Loza, M. Alencastre-Miranda, Physically based vi-

sual simulation of the lattice Boltzmann method on the GPU: a survey, J. Su-
percomput. 74 (7) (2018) 3441–3467 .

[21] K.E. Niemeyer, C.J. Sung, Recent progress and challenges in exploiting graph-
ics processors in computational fluid dynamics, J. Supercomput. 67 (2) (2014)

528–564 .
22] W. Li, X. Wei, A. Kaufman, Implementing lattice Boltzmann computation on

graphics hardware, Visual Comput. 19 (7) (2003) 4 4 4–456 .

23] J. Tölke, M. Krafczyk, TeraFLOP computing on a desktop PC with GPUs for 3d
CFD, Int. J. Comput. Fluid Dyn. 22 (7) (2008) 443–456 .

24] N. Delbosc, J.L. Summers, A. Khan, N. Kapur, C.J. Noakes, Optimized implemen-
tation of the lattice Boltzmann method on a graphics processing unit towards

real-time fluid simulation, Comput. Math. Appl. 67 (2) (2014) 462–475 .
25] C. Huang, B. Shi, N. He, Z. Chai, Implementation of multi-GPU based lattice

Boltzmann method for flow through porous media, Adv. Appl. Math. Mech. 7
(1) (2015) 1–12 .

26] C. Huang, B. Shi, Z. Guo, Z. Chai, Multi-GPU based lattice Boltzmann method

for hemodynamic simulation in patient-specific cerebral aneurysm, Commun.
Comput. Phys. 17 (4) (2015) 960–974 .

27] E. Calore, J. Kraus, S.F. Schifano, R. Tripiccione, Accelerating lattice Boltzmann
applications with openACC, in: European Conference on Parallel Processing,

Springer, 2015, pp. 613–624 .
28] S. Blair, C. Albing, A . Grund, A . Jocksch, Accelerating an MPI lattice Boltzmann

code using openACC, in: Proceedings of the Second Workshop on Accelerator

Programming using Directives, 2015, pp. 1–9 .
29] E. Calore, A. Gabbana, J. Kraus, S.F. Schifano, R. Tripiccione, Performance and

portability of accelerated lattice Boltzmann applications with openACC, Con-
curr. Comput.-Pract. Exp. 28 (12) (2016) 3485–3502 .

30] A. Xu, L. Shi, T. Zhao, Accelerated lattice Boltzmann simulation using GPU and
openACC with data management, Int. J. Heat Mass Transf. 109 (2017) 577–588 .

[31] F. Kuznik, C. Obrecht, G. Rusaouen, J.J. Roux, LBM based flow simulation using

GPU computing processor, Comput. Math. Appl. 59 (7) (2010) 2380–2392 .
32] C. Obrecht, F. Kuznik, B. Tourancheau, J.J. Roux, Multi-GPU implementation of

the lattice Boltzmann method, Comput. Math. Appl. 65 (2) (2013) 252–261 .
33] H. Yoshida, M. Nagaoka, Multiple-relaxation-time lattice Boltzmann model for

the convection and anisotropic diffusion equation, J. Comput. Phys. 229 (20)
(2010) 7774–7795 .

34] Z. Chai, T. Zhao, Lattice Boltzmann model for the convection-diffusion equa-

tion, Phys. Rev. E 87 (6) (2013) 063309 .
35] J. Wang, D. Wang, P. Lallemand, L.S. Luo, Lattice Boltzmann simulations of ther-

mal convective flows in two dimensions, Comput. Math. Appl. 65 (2) (2013)
262–286 .

36] D. Contrino, P. Lallemand, P. Asinari, L.S. Luo, Lattice-Boltzmann simulations of
the thermally driven 2D square cavity at high Rayleigh numbers, J. Comput.

Phys. 275 (2014) 257–272 .

37] A. Xu, L. Shi, H.D. Xi, Lattice Boltzmann simulations of three-dimensional ther-
mal convective flows at high rayleigh number, Int. J. Heat Mass Transf. 140

(2019) 359–370 .
38] Z. Guo, C. Zheng, B. Shi, Discrete lattice effects on the forcing term in the lat-

tice Boltzmann method, Phys. Rev. E 65 (4) (2002) 046308 .

https://doi.org/10.13039/501100001809
http://refhub.elsevier.com/S0017-9310(22)01118-8/sbref0001
http://refhub.elsevier.com/S0017-9310(22)01118-8/sbref0002
http://refhub.elsevier.com/S0017-9310(22)01118-8/sbref0002
http://refhub.elsevier.com/S0017-9310(22)01118-8/sbref0003
http://refhub.elsevier.com/S0017-9310(22)01118-8/sbref0004
http://refhub.elsevier.com/S0017-9310(22)01118-8/sbref0004
http://refhub.elsevier.com/S0017-9310(22)01118-8/sbref0005
http://refhub.elsevier.com/S0017-9310(22)01118-8/sbref0006
http://refhub.elsevier.com/S0017-9310(22)01118-8/sbref0007
http://refhub.elsevier.com/S0017-9310(22)01118-8/sbref0008
http://refhub.elsevier.com/S0017-9310(22)01118-8/sbref0009
http://refhub.elsevier.com/S0017-9310(22)01118-8/sbref0010
http://refhub.elsevier.com/S0017-9310(22)01118-8/sbref0011
http://refhub.elsevier.com/S0017-9310(22)01118-8/sbref0012
http://refhub.elsevier.com/S0017-9310(22)01118-8/sbref0013
http://refhub.elsevier.com/S0017-9310(22)01118-8/sbref0014
http://refhub.elsevier.com/S0017-9310(22)01118-8/sbref0015
http://refhub.elsevier.com/S0017-9310(22)01118-8/sbref0016
http://refhub.elsevier.com/S0017-9310(22)01118-8/sbref0017
http://refhub.elsevier.com/S0017-9310(22)01118-8/sbref0018
http://refhub.elsevier.com/S0017-9310(22)01118-8/sbref0019
http://refhub.elsevier.com/S0017-9310(22)01118-8/sbref0020
http://refhub.elsevier.com/S0017-9310(22)01118-8/sbref0021
http://refhub.elsevier.com/S0017-9310(22)01118-8/sbref0022
http://refhub.elsevier.com/S0017-9310(22)01118-8/sbref0023
http://refhub.elsevier.com/S0017-9310(22)01118-8/sbref0024
http://refhub.elsevier.com/S0017-9310(22)01118-8/sbref0025
http://refhub.elsevier.com/S0017-9310(22)01118-8/sbref0026
http://refhub.elsevier.com/S0017-9310(22)01118-8/sbref0027
http://refhub.elsevier.com/S0017-9310(22)01118-8/sbref0028
http://refhub.elsevier.com/S0017-9310(22)01118-8/sbref0029
http://refhub.elsevier.com/S0017-9310(22)01118-8/sbref0030
http://refhub.elsevier.com/S0017-9310(22)01118-8/sbref0031
http://refhub.elsevier.com/S0017-9310(22)01118-8/sbref0032
http://refhub.elsevier.com/S0017-9310(22)01118-8/sbref0033
http://refhub.elsevier.com/S0017-9310(22)01118-8/sbref0034
http://refhub.elsevier.com/S0017-9310(22)01118-8/sbref0035
http://refhub.elsevier.com/S0017-9310(22)01118-8/sbref0036
http://refhub.elsevier.com/S0017-9310(22)01118-8/sbref0037
http://refhub.elsevier.com/S0017-9310(22)01118-8/sbref0038

A. Xu and B.-T. Li International Journal of Heat and Mass Transfer 201 (2023) 123649

[

[

[

[

[

[

[

[

[

[

39] Z. Guo, C. Zheng, Analysis of lattice Boltzmann equation for microscale gas
flows: relaxation times, boundary conditions and the Knudsen layer, Int. J.

Comput. Fluid Dyn. 22 (7) (2008) 465–473 .
40] Z. Chai, T. Zhao, Effect of the forcing term in the multiple-relaxation-time lat-

tice Boltzmann equation on the shear stress or the strain rate tensor, Phys.
Rev. E 86 (1) (2012) 016705 .

[41] L. Li, R. Mei, J.F. Klausner, Boundary conditions for thermal lattice Boltzmann
equation method, J. Comput. Phys. 237 (2013) 366–395 .

42] P. Bailey, J. Myre, S.D. Walsh, D.J. Lilja, M.O. Saar, Accelerating lattice Boltz-

mann fluid flow simulations using graphics processors, in: 2009 International
Conference on Parallel Processing, IEEE, 2009, pp. 550–557 .

43] C.-C. Ye, P.-J.-Y. Zhang, Z.-H. Wan, R. Yan, D.J. Sun, Accelerating CFD simulation
with high order finite difference method on curvilinear coordinates for mod-

ern GPU clusters, Adv. Aerodynam. 4 (1) (2022) 1–32 .
44] L.-S. Luo, W. Liao, X. Chen, Y. Peng, W. Zhang, et al., Numerics of the lattice

Boltzmann method: effects of collision models on the lattice Boltzmann simu-

lations, Phys. Rev. E 83 (5) (2011) 056710 .
12
45] C. Schepke, N. Maillard, P.O. Navaux, Parallel lattice Boltzmann method with
blocked partitioning, Int. J. Parallel Program. 37 (6) (2009) 593–611 .

46] C. Obrecht, F. Kuznik, B. Tourancheau, J.J. Roux, Scalable lattice Boltzmann
solvers for CUDA GPU clusters, Parallel Comput. 39 (6–7) (2013) 259–270 .

[47] E. Calore, A. Gabbana, J. Kraus, E. Pellegrini, S.F. Schifano, R. Tripiccione, Mas-
sively parallel lattice–Boltzmann codes on large GPU clusters, Parallel Comput.

58 (2016) 1–24 .
48] W. Xian, A. Takayuki, Multi-GPU performance of incompressible flow compu-

tation by lattice Boltzmann method on GPU cluster, Parallel Comput. 37 (9)

(2011) 521–535 .
49] P.-Y. Hong, L.-M. Huang, L.-S. Lin, C.A. Lin, Scalable multi-relaxation-time lattice

Boltzmann simulations on multi-GPU cluster, Comput. Fluids 110 (2015) 1–8 .
50] H. Jin, D. Jespersen, P. Mehrotra, R. Biswas, L. Huang, B. Chapman, High per-

formance computing using MPI and openMP on multi-core parallel systems,
Parallel Comput. 37 (9) (2011) 562–575 .

http://refhub.elsevier.com/S0017-9310(22)01118-8/sbref0039
http://refhub.elsevier.com/S0017-9310(22)01118-8/sbref0040
http://refhub.elsevier.com/S0017-9310(22)01118-8/sbref0041
http://refhub.elsevier.com/S0017-9310(22)01118-8/sbref0042
http://refhub.elsevier.com/S0017-9310(22)01118-8/sbref0043
http://refhub.elsevier.com/S0017-9310(22)01118-8/sbref0044
http://refhub.elsevier.com/S0017-9310(22)01118-8/sbref0045
http://refhub.elsevier.com/S0017-9310(22)01118-8/sbref0046
http://refhub.elsevier.com/S0017-9310(22)01118-8/sbref0047
http://refhub.elsevier.com/S0017-9310(22)01118-8/sbref0048
http://refhub.elsevier.com/S0017-9310(22)01118-8/sbref0049
http://refhub.elsevier.com/S0017-9310(22)01118-8/sbref0050

	Multi-GPU thermal lattice Boltzmann simulations using OpenACC and MPI
	1 Introduction
	2 Numerical method
	2.1 Mathematical model for thermal convection
	2.2 The LB model for thermal convection
	2.3 Simulation settings and parallel performance characterization

	3 Implementation and optimization of the hybrid OpenACC and MPI approach
	3.1 Naive implementation of hybrid OpenACC and MPI approach
	3.2 Block partitioning of the computational domain
	3.3 Overlapping communications with computations
	3.4 Concurrent computation on a GPU

	4 Weak scaling test
	5 Conclusions
	Declaration of Competing Interest
	CRediT authorship contribution statement
	Acknowledgments
	Appendix A Comparison of the parallel performance on CPUs versus GPUs
	References

