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a b s t r a c t 

We assess the performance of the hybrid Open Accelerator (OpenACC) and Message Passing Interface 

(MPI) approach for multi-graphics processing units (GPUs) accelerated thermal lattice Boltzmann (LB) 

simulation. The OpenACC accelerates computation on a single GPU, and the MPI synchronizes the infor- 

mation between multiple GPUs. With a single GPU, the two-dimension (2D) simulation achieved 1.93 

billion lattice updates per second (GLUPS) with a grid number of 8193 2 , and the three-dimension (3D) 

simulation achieved 1.04 GLUPS with a grid number of 385 3 , which is more than 76% of the theoretical 

maximum performance. On multi-GPUs, we adopt block partitioning, overlapping communications with 

computations, and concurrent computation to optimize parallel efficiency. We show that in the strong 

scaling test, using 16 GPUs, the 2D simulation achieved 30.42 GLUPS and the 3D simulation achieved 

14.52 GLUPS. In the weak scaling test, the parallel efficiency remains above 99% up to 16 GPUs. Our re- 

sults demonstrated that, with improved data and task management, the hybrid OpenACC and MPI tech- 

nique is promising for thermal LB simulation on multi-GPUs. 

© 2022 Elsevier Ltd. All rights reserved. 
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. Introduction 

Over the past half-century, the development of semiconduc- 

or transistors has driven rapid growth and prosperity of high- 

erformance computing (HPC). The miniaturization of computer 

omponents was foreseen by physicist Richard Feynman in his 

959 address ”There is Plenty of Room at the Bottom” [1] . Later 

n 1975, Gordon Moore, the founder of Intel Corporation, predicted 

hat the number of transistors per computer chip would double 

very two years, which is known as Moore’s law [2] . This trend 

eld up considerably well until recently when transistors reduce 

heir physical size and are reaching the atomic scale, implying 

hat Moore’s law is nearing its end and is anticipated to flatten 

y 2025 [3] . Alternative avenues for growth in computer perfor- 

ance include hardware architecture, software, and algorithms [4] . 

n the post-Moore era, computer architects should focus on hard- 

are streamlining and provide additional chip area for more cir- 

uitry to operate in parallel, rather than use more transistors and 

ncrease the complexity of processing cores as they used to do. For 

xample, the graphics process unit (GPU) contains many parallel 
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anes and it can exploit much more parallelism, thus it delivers 

uch more performance on computations. 

The lattice Boltzmann (LB) method is a numerical approach to 

imulate fluid flows and associate heat and mass transfer processes 

5,6] . Specifically, the LB method describes the evolution of particle 

ensity distribution, which originated from the Boltzmann kinetic 

heory but practically reflects hydrodynamic behavior at the con- 

inuum scale. Mesoscopic physical pictures can be easily incorpo- 

ated into the LB method, and macroscopic physical conservation 

aws can be recovered with a relatively low computational cost. Af- 

er three decades of development of the LB method, the computa- 

ional fluid dynamics community has witnessed its powerful abil- 

ty to simulate complex flows, such as gas-liquid two-phase flow 

7,8] , particulate flow [9–11] , fluid-structure interaction [12] , flow 

n porous media [13] , and so on. Advancements in HPC utilizing 

eterogeneous architecture, namely the combined traditional cen- 

ral processing unit (CPU) and the emerging accelerators (such as 

PUs), further facilitate the application of LB simulations in large- 

cale engineering problems [14,15] . Open-source codes based on 

he LB method, including OpenLB [16] , Palabos [17] , and Sailfish 

18] , even aim to brace the forthcoming Exascale supercomputing 

19] . Review articles on LB simulation using GPUs can be found by 

avarro-Hinojosa et al. [20] , Niemeyer and Sung [21] . 

https://doi.org/10.1016/j.ijheatmasstransfer.2022.123649
http://www.ScienceDirect.com
http://www.elsevier.com/locate/hmt
http://crossmark.crossref.org/dialog/?doi=10.1016/j.ijheatmasstransfer.2022.123649&domain=pdf
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The pioneer works implementing LB simulations on graphics 

ardware were achieved by using textures and render buffers [22] . 

ince 2007, with the introduction of Compute Unified Device Ar- 

hitecture (CUDA), which is a parallel computing platform and ap- 

lication programming interface (API), significant advances in ap- 

lying LB simulation on GPUs have been made [23–26] . Mean- 

hile, the Open Computing Language (OpenCL, initially released 

n 2009), which is an open standard for writing programs execut- 

ng across the heterogeneous platform, has also accelerated the LB 

imulation without being restricted to only running on NVIDIA’s 

ardware. For example, Sailfish, an open-source LB solver is built 

ynamically at run-time in CUDA or OpenCL [18] . However, these 

wo APIs require substantial changes in the original code, thus 

hreatening the code’s correctness, portability, and maintainability. 

he third accelerating approach is using Open Accelerators (Ope- 

ACC), which is a platform-independent, high level and directive- 

ased programming standard. The programmers provide hints as 

nnotations to the original code, specifying that a certain loop 

hould run in parallel on the accelerator, then compute-intensive 

alculations are offloaded to the accelerator device without the 

eed to explicitly manage data transfers between the host and the 

ccelerator. Recently, Open Multi-Processing (OpenMP) support for 

PUs is also available. Both OpenACC and OpenMP are directive 

ased; the difference is that OpenACC is more descriptive, while 

penMP is more prescriptive (using distribute constructs to explic- 

tly maps work-loads) [27] . 

So far, there are fewer implementations of LB code using Ope- 

ACC compared to that using CUDA, primarily due to concerns re- 

arding computational efficiency [27–29] . Xu et al. [30] demon- 

trated that for thermal flows (e.g., fluid flows and heat transfer in 

he side heated cavity), a speedup of around 53X can be achieved 

hen using OpenACC acceleration compared with the serial code. 

he results were obtained on a single Tesla K20c GPU, and 282.6 

illion lattice update per second (MLUPS, defined later in this 

aper) were reached for double-precision floating calculation. Al- 

hough higher performance could be gained using single-precision 

oating calculation [31] , it would pose threats to the accuracy of 

he simulation results, particularly for turbulent flow simulations 

32] . 

To utilize the computing power of multi-node GPU clusters, LB 

mplementations based on a hybrid OpenACC and Message Passing 

nterface (MPI) approach can be used for massively parallel sim- 

lations of problems with larger domain sizes. However, simula- 

ions running on multiple GPUs have to face Peripheral Compo- 

ent Interconnect Express (PCI-e) bottlenecks and minimize inter- 

PU communications. In this work, we address implementation is- 

ues when using hybrid MPI and OpenACC to accelerate LB simula- 

ions. We show that ultra-high computational performance can be 

chieved with proper implementations. The rest of this paper is or- 

anized as follows. In Section 2 , we introduce numerical details for 

he simulation of thermal convection, including the mathematical 

odel and the corresponding LB model. In Section 3 , we present 

etails for implementation and optimization of the hybrid Ope- 

ACC and MPI, as well the parallel performance measured via the 

trong scaling test. In Section 4 , we present parallel performance 

easured via the weak scaling test. In Section 5 , the main findings 

f this work are summarized. 

. Numerical method 

.1. Mathematical model for thermal convection 

We simulate thermal convection based on the Boussinesq ap- 

roximation. We assume the fluid flow is incompressible, and we 

reat the temperature as an active scalar that influences the ve- 

ocity field through the buoyancy. The viscous heat dissipation and 
2 
ompression work are neglected, and all the transport coefficients 

re assumed to be constants. Then, the governing equations can be 

ritten as 

 · u = 0 (1a) 

∂u 

∂t 
+ u · ∇u = − 1 

ρ0 

∇P + ν∇ 

2 u + gβT ( T − T 0 ) ̂ z (1b) 

∂T 

∂t 
+ u · ∇ T = αT ∇ 

2 T (1c) 

here u , P and T are the velocity, pressure, and temperature of 

he fluid, respectively. ρ0 and T 0 are reference density and tem- 

erature, respectively. ν , βT and αT denote the viscosity, thermal 

xpansion coefficient, and thermal diffusivity of the fluid, respec- 

ively. ˆ z is the unit parallel to gravity. With the scaling 

x 

∗ = x /H, t ∗ = t/ 
√ 

H/ ( βT g�T ) , u 

∗ = u / 
√ 

βT gH�T , 

P ∗ = P/ ( ρ0 gβT �T H ) , T ∗ = ( T − T 0 ) / �T 

(2) 

hen, Eq. (1) can be rewritten in dimensionless form as 

 · u 

∗ = 0 (3a) 

∂u 

∗

∂t ∗
+ u 

∗ · ∇ u 

∗ = −∇ P ∗ + 

√ 

Pr 

Ra 
∇ 

2 u 

∗ + T ∗ ˜ z (3b) 

∂T ∗

∂t ∗
+ u 

∗ · ∇ T ∗ = 

√ 

1 

PrRa 
∇ 

2 T ∗ (3c) 

Here, H is the cell height and it is chosen as the characteristic 

ength. t f = 

√ 

H/ ( βT g�T ) is the free-fall time and it is chosen as 

he characteristic time. �T is the temperature difference between 

eating and cooling walls. The two dimensionless parameters are 

he Ra and the P r, which are defined as 

a = 

gβT �T H 

3 

ναT 

, P r = 

ν

αT 

(4) 

.2. The LB model for thermal convection 

We adopt the double distribution function (DDF)-based LB 

odel to simulate thermal convective flows with the Boussinesq 

pproximation [33–36] . Specifically, we chose a D2Q9 discrete lat- 

ice in two-dimension (2D) or a D3Q19 discrete lattice in three- 

imension (3D) for the Navier–Stokes equations to simulate fluid 

ows, and a D2Q5 discrete lattice in 2D or a D3Q7 discrete lattice 

n 3D for the energy equation to simulate heat transfer [30,37] , as 

llustrated in Fig. 1 . Here, the D2Q5 or D3Q7 model was chosen 

or the convection-diffusion equation to pursue computational ef- 

ciency. 

To enhance the numerical stability, the multi-relaxation-time 

MRT) collision operator is adopted in the evolution equations of 

oth density and temperature distribution functions. The evolution 

quation of the density distribution function is written as 

f i ( x + e i δt , t + δt ) − f i (x , t) = −
(
M 

−1 S 
)

i j 

[ 
m j (x , t) −m 

( eq ) 
j 

(x , t) 
] 
+ δt F i 

(5) 

here f i is the density distribution function and i = 0 , 1 , · · · , q − 1 .

 is the fluid plarcel position, t is the time, δt is the time step. e i 
s the discrete velocity along the i th direction. For D2Q9 discrete 

attice, q = 9 ; for D3Q19 discrete lattice, q = 19 . The forcing term

 

′ 
i 

on the right-hand side of Eq. (5) is given by F ′ = M 

−1 
(
I − S 

2 

)
M ̃

 F ,

nd the term M ̃

 F is given as [38–40] 

 ̃

 F D 2 Q9 = [ 0 , 6 u · F , −6 u · F , F x , −F x , F y , −F y , 2 uF x − 2 v F y , uF x + v F y ] T

(6a) 
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Fig. 1. Illustration of discrete velocity models: ( a ) the D2Q9 model and ( b ) the D2Q5 model for two-dimensional simulations; ( c ) the D3Q19 model and ( d ) the D3Q7 model 

for three-dimensional simulation. 
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 ̃

 F D 3 Q19 = 

[
0 , 38 u · F , −11 u · F , F x , − 2 

3 
F x , F y , − 2 

3 
F y , F z , − 2 

3 
F z , 

4 uF x − 2 v F y − 2 wF z , −2 uF x + v F y + wF z , 2 v F y − 2 wF z , 

−v F y + wF z , uF y + v F x , v F z + wF y , uF z + wF x , 0 , 0 , 0 ] 
T 

(6b) 

here F = ρgβT ( T − T 0 ) ̂ y in 2D or F = ρgβT ( T − T 0 ) ̂ z in 3D. The 

acroscopic density ρ and velocity u are obtained from ρ = 

 q −1 
i =0 

f i , u = 

(∑ q −1 
i =0 

e i f i + 

1 
2 F 

)
/ρ . At the fluid-solid boundary, the 

o-slip velocity boundary condition can be realized via the half- 

ay bounce-back scheme f 
ī ( x , t + δt ) = f + 

i 
(x , t) . Here, f + 

i 
(x , t) de-

otes the post-collision density distribution function; f 
ī 
(x , t) de- 

otes the density distribution function associated with the velocity 

 

ī 
, and we have the relation e 

ī 
= −e i . 

The evolution equation of the temperature distribution function 

s written as 

 i ( x + e i δt , t + δt ) − g i (x , t) = −
(
N 

−1 Q 

)
i j 

[ 
n j (x , t) − n 

( eq ) 
j 

(x , t) 
] 
(7) 

here g i is the temperature distribution function and i = 

 , 1 , · · · , q − 1 . For D2Q5 discrete lattice, q = 5 ; for D3Q7 discrete

attice, q = 7 . The macroscopic temperature T is obtained from 

 = 

∑ q −1 
i =0 

g i . At the fluid-solid boundary, the Dirichlet temperature 

oundary condition can be realized via the half-way anti-bounce- 

ack scheme g 
ī ( x , t + δt ) = −g + 

i 
(x , t) + ωT w 

, where T w 

is the wall

emperature, ω = ( 4 + a T ) / 10 for D2Q5 and ω = ( 6 + a T ) / 21 for 

3Q7, a T is a constant related to thermal diffusivity [41] ; the Neu- 

ann adiabatic boundary condition can be realized via the half- 

ay bounce-back scheme g 
ī ( x , t + δt ) = g + 

i 
(x , t) . Here, g + 

i 
(x , t) de-

otes the post-collision temperature distribution function; g 
ī 
(x , t) 

enotes the temperature distribution function associated with the 

elocity e 
ī 
. More numerical details of the thermal LB method can 

e found in our previous work [30,37] . 
3 
.3. Simulation settings and parallel performance characterization 

We consider a 2D square cell and a 3D cubic cell. The left and 

ight walls of the cell are kept at constant hot and cold tempera- 

ures, respectively; while the other two (or four) walls of the 2D 

ell (or the 3D cell) are adiabatic; all walls impose no-slip velocity 

oundary conditions. We fixed the Prandtl number as P r = 0 . 71 .

or the 2D thermal convection, the Rayleigh number is fixed as 

a = 10 8 ; while for the 3D thermal convection, the Rayleigh num- 

er is fixed as Ra = 10 7 . Previously, we obtained a steady flow pat-

ern in these two cases [30,37] ; while at higher Ra , the flow tran-

its to an unsteady state, and a Hopf bifurcation occurs. We veri- 

ed the multi-GPU implementation can give correct simulation re- 

ults consistent with our previous results [30,37] (see Fig. 2 for the 

emperature field in the convection cell); however, for the sake of 

larity, we do not repeat to provide the tabulated flow quantities 

nd heat transfer properties. In the following, we focus on the par- 

llel performance of the multi-GPU simulation. 

In the strong scaling test, we measure the running time as a 

unction of GPU numbers for fixed total problem size, which rep- 

esents the ability to solve a problem faster using more resources; 

hile in the weak scaling test, we measure the running time as 

 function of GPU numbers for fixed problem size per GPU (i.e., 

he total problem size increases), which represents the ability to 

olve larger problems with larger resources. We adopt two met- 

ics to characterize the parallel performance of the LB simulation, 

ne is Million Lattice Updates Per Second (MLUPS) and the other 

s parallel efficiency. The MLUPS is defined as [42] 

MLUPS = 

mesh size × iteration steps 

running time × 10 

6 
(8) 

eanwhile, we have 1 GLUPS = 10 0 0 MLUPS, where GLUPS stands 

or billion lattice updates per second. In the strong scaling test, the 
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Fig. 2. The temperature field in the convection cell: ( a ) the 2D simulation and ( b ) the 3D simulation. 
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arallel efficiency η is defined as 

= 

T 1 
T n · n 

(9) 

ere, T 1 denotes the running time using a single GPU and T n de- 

otes the running time using n GPUs. In the weak scaling test, 

he parallel efficiency η is simply calculated as η = T 1 /T n . We 

onducted experiments on a four-node GPU cluster, each node is 

quipped with four NVIDIA A100 GPUs powered by the NVIDIA 

mpere Architecture. The network interconnects use 100 Gigabits 

er second (Gbps) Remote direct memory access over Converged 

thernet (RoCE). The inter-GPU-GPU communication within a node 

oes over the PCI-e. To automatically utilize the GPUDirect accel- 

ration technologies, we adopt a CUDA-aware MPI implemented in 

penMPI. With GPUDirect technology, including Peer to Peer (P2P) 

nd Remote Direct Memory Access (RDMA), the buffers can be di- 

ectly sent from a GPU memory to another GPU memory or the 

etwork without touching the host memory [43] . 

We measure the running time and then calculate the MLUPS 

nd parallel efficiency. In Section 3 , we describe optimization 

trategies for multi-GPU simulation and evaluate the parallel per- 

ormance via the strong scaling test; then, in Section 4 , we fur- 

her discuss the parallel performance via the weak scaling test. In 

he strong scaling test, we fix a grid number of 8193 × 8193 in the

D simulation and a grid number of 385 × 385 × 385 in the 3D 

imulation. Here, we use an odd number of grid points in each 

imension for two reasons: first, it reduces the oscillations due 

o spurious conserved quantities [44] ; secondly, for a grid num- 

er of N in each dimension, it allows the [(N + 1) / 2] th point to

e precisely located at the center line (plane) based on the half- 

ay (anti-)bounce-back boundary scheme, which is convenient for 

ost-analysis of flow and heat transfer quantities. The iteration 

teps are fixed as 12,0 0 0 and 60 0 0, respectively, for the 2D and 3D

imulations. Preliminary tests showed that the corresponding run- 

ing time was around 30 seconds with 16 GPUs (i.e., the largest 

umber of GPUs in the tests), which ensures the measurement of 

omputing performance enters a steady state. Detailed settings for 

he weak scaling test are described in Section 5 . All the simula- 

ions adopt double-precision floating-point arithmetic, which en- 

ures the simulation accuracy. 

. Implementation and optimization of the hybrid OpenACC 

nd MPI approach 

.1. Naive implementation of hybrid OpenACC and MPI approach 

To utilize the computing power of GPU clusters, we use the 

ybrid OpenACC and MPI approach, in which OpenACC acceler- 

tes the computation on a single GPU and MPI synchronizes the 
4 
nformation between multiple GPUs. In Fig. 3 (a), we present the 

owchart of the DDF-based LB model for thermal convection prob- 

ems. Here, we split the evaluation of the density distribution func- 

ion (i.e., Eq. (5) ) into the following two steps 

ol l ision step : f + 
i 
(x , t) = f i (x , t) −

(
M 

−1 S 
)

i j 

[ 
m j (x , t) −m 

( eq ) 
j 

(x , t) 
] 
+ δt F 

′ 
i 

(10a) 

treaming step : f i ( x + e i δt , t + δt ) = f + 
i 
(x , t ) (10b) 

Similarly, we split the evaluation of the temperature distribu- 

ion function (i.e., Eq. (7) ) into two steps as 

ol l ision step : g + 
i 
(x , t) = g i (x , t) −

(
N 

−1 Q 

)
i j 

[ 
n j (x , t) −n 

( eq ) 
j 

(x , t) 
] 

(11a) 

treaming step : g i ( x + e i δt , t + δt ) = g + 
i 
(x , t ) (11b) 

In the collision step, we can use the symbol �i (x , t) to de-

ote the collision operator, which is the second term on the right- 

and side of the equation. The collision step is also known as the 

elaxation step and it completely updates local information; the 

treaming step is also known as the propagation step and it trans- 

ers data information to its neighboring. Because GPUs adopt sin- 

le instruction multiple threads (SIMT) execution model, we op- 

imized the data layout for the distribution function and stored 

he information in the structure of array (SoA) to meet the re- 

uirement of coalescing memory access, such that neighboring 

hreads access neighboring data. For example, the density distribu- 

ion function f i (x , t) is stored with index (x + N x × y + N x × N y × i )

r (x + N x × y + N x × N y × z + N x × N y × N z × i ) , respectively, for the

D or 3D case. Here, N x , N y , and N z denote the grid number in the

 , y , and z directions, respectively. Using the column-major order 

rogramming language (such as Fortran), the corresponding index 

ormula implementation is f (x, y, i ) or f (x, y, z, i ) [30] . 

In a naive implementation of the hybrid OpenACC and MPI ap- 

roach, we adopt a mono-dimensional partitioning of the compu- 

ational domain. Take the column-major order programming lan- 

uage (such as Fortran) as an example, we decompose the do- 

ain along the y -direction (or the z-direction) in the 2D (or the 

D) domain, then the interface between the subdomains is along 

he x -direction line (or the x − y plane), which favors the contin- 

ous transfer data in memory space. We add ghost layers outside 

he boundary of each subdomain to receive data from the adja- 

ent subdomains, as illustrated in Fig. 3 (b). To reduce the amount 

f data transfer, in the streaming step, we do not transfer the full 

rray of the distribution function f + 
i 

(x ) or g + 
i 
(x ) , but only com-

onents of these arrays corresponding to specific discrete veloc- 

ty directions. For example, using the D2Q9 discrete lattice for the 



A. Xu and B.-T. Li International Journal of Heat and Mass Transfer 201 (2023) 123649 

Fig. 3. ( a ) Flowchart of double distribution function (DDF)-based lattice Boltzmann (LB) model for thermal convection simulation; ( b ) mono-dimensional partitioning of the 

2D computation domain and the associated data exchange. 

Fig. 4. Performanc of ( a, c ) the 2D simulation and ( b, d ) the 3D simulation, in terms of ( a, b ) the MLUPS and ( c, d ) the parallel efficiency. 
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ensity distribution function and D2Q5 discrete lattice for the tem- 

erature distribution function, the current GPU [the corresponding 

ubdomain is marked by orange color in Fig. 3 (b)] only sends val- 

es of f + 
2 , 5 , 6 

(x ) and g + 
2 
(x ) [these are distribution functions belong

o the top boundary of the subdomain, see the red rectangle with 

he solid line in Fig. 3 (b)] to the top neighbor GPU, while it only

ends values of f + 
4 , 7 , 8 

(x ) and g + 
4 
(x ) [these are distribution functions

elong to the bottom boundary of the subdomain, see the blue 

ectangle with the solid line in Fig. 3 (b)] to the bottom neighbor 
PU. t

5 
Fig. 4 shows the parallel performance in terms of MULPS and 

arallel efficiency for the 2D simulation and the 3D simulation, 

espectively. We can see that using 1 GPU, the 2D thermal LB 

imulation achieves 1931.2 MLUPS, and the 3D thermal LB sim- 

lation achieves 1042.4 MLUPS. We note in the D2Q9 + D2Q5 

hermal LB model, each grid node accesses 80 variables within 

n iteration step and these variables occupy 8 bytes in double- 

recision; while in the D3Q19 + D3Q7 thermal LB model, each 

rid node accesses 143 variables within an iteration step. Because 

he NVIDIA A100 has a memory bandwidth of 1555 GB/s, the 
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Fig. 5. Illustration of block partitioning and data exchange for the 2D domain. 
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Table 1 

Partition details of the domain in 2D and 3D. 

GPU numbers Partition type in 2D partition type in 3D 

1 - - 

2 1 × 2 1 × 1 × 2 

4 2 × 2 1 × 2 × 2 

8 2 × 4 2 × 2 × 2 

16 4 × 4 2 × 2 × 4 
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hermal LB simulation has a theoretical maximum performance of 

555 × 10 0 0 3 / (80 × 8 × 10 6 ) = 2429 . 7 MLUPS for the 2D simula-

ion, and 1555 × 10 0 0 3 / (143 × 8 × 10 6 ) = 1359 . 3 MLUPS for the 3D

imulation. In other words, we have reached 79.5% and 76.7% of 

he theoretical maximum performance, similar to that of the Sun- 

ayLB [14] . With the increase of GPU numbers, the MULPS gen- 

rally increases; however, the parallel efficiency degrades when 

ore GPUs are used, particularly for the 3D case in which the 

arallel efficiency is less than 57% using 16 GPUs, indicating the 

arallel code is not scalable. Two reasons may be responsible for 

he poor parallel performance. First, in the strong scaling measure- 

ent, the computational load on each GPU decreases with the in- 

rease of GPU numbers; however, the communication cost per GPU 

lmost remains the same. Adopting the mono-dimensional parti- 

ioning, the amount of data that needs to be transferred is 2 × N x 

nd 2 × N x × N y , respectively, for the 2D and the 3D simulation. 

s a result, the ratio between communication time and the total 

ime increases with the increase of GPU numbers, restricting the 

calability of the code. Secondly, if the grid number of the whole 

omputation domain is not large enough, the computational load 

n each GPU is not sufficient to fully occupy the resources of that 

PU, and the overhead to launch kernel matters. To further boost 

he parallel performance using multi-GPUs, we describe some op- 

imization strategies in the following subsections. 

.2. Block partitioning of the computational domain 

In mono-dimensional partitioning, the computational domain 

s decomposed into several slices and each slice is allocated to a 

ingle GPU. An alternative strategy for domain decomposition is 

lock partitioning, which is to decompose the domain in more 

han one dimension [45,46] . Fig. 5 illustrates the block partition- 

ng and data exchange for the 2D domain. We decompose the 

omain both along the x and the y directions, and we minimize 
6

he differences in the subdomain size along each dimension. Us- 

ng the column-major order programming language (such as For- 

ran), the data is stored continuously along the x -direction in the 

emory space, we preferably decompose the domain along the y - 

irection (in 2D) or the z-direction (in 3D). The partition details 

or the domain in 2D and 3D are provided in Table 1 . After that,

e add ghost layers to each subdomain to store the data received 

rom adjacent subdomains. Using Fortran, we need to wrap the left 

nd right boundary nodes along the y-direction into a contiguous 

ache space before sending them to its left and right neighbor- 

ng GPUs (see the nodes in the light blue and purple rectangles 

ith solid lines in Fig. 5 ). Here we also included ghost nodes out- 

ide the subdomain boundaries when sending the message, such 

hat data for the corner points can be implicitly synchronized and 

ransferred to the diagonally neighboring GPUs. With CUDA-aware 

PI libraries implemented in OpenMPI, we discourage the use of 

PI-derived datatypes for data communication, even though both 

ontiguous and non-contiguous derived datatypes are supported. 

he non-contiguous datatypes currently have a high overhead be- 

ause of the many calls to copy all the pieces of the buffer into the

ntermediate buffer. Previously, Calore et al. [47] overcame this is- 

ue by developing a custom communication library that uses per- 

istent send and receives buffers, allocated once on the GPUs at 

rogram initialization. Here, we recommend an alternative solu- 
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Fig. 6. Performanc comparisons between mono-dimensional and block partitioning of the computational domain for ( a, c ) the 2D simulation and ( b, d ) the 3D simulation, 

in terms of ( a, b ) the MLUPS and ( c, d ) the parallel efficiency. 
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ion that simply put the ghost nodes into a buffer of contiguous 

emory locations. 

Fig. 6 compares the performance between mono-dimensional 

artitioning and block partitioning of the computational domain. 

e can see that adopting block partitioning can improve the 

LUPS and parallel efficiency for the 3D simulations, however, 

t slightly degrades the parallel performance for the 2D simula- 

ions. In the following, we provide a theoretical analysis of the 

dvantages and disadvantages of adopting block partitioning. For 

he 2D computational domain with size N x × N y , we assume a 

quare domain of N x = N y = N for simplicity. Adopting the mono- 

imensional partitioning, each GPU sends 2 N boundary nodes to its 

eighboring GPUs, and it launches two kernels for data communi- 

ations on the two boundaries; while adopting the block partition- 

ng, each GPU sends 4(N/ 
√ 

a + 2) boundary nodes to its neighbor- 

ng, and it launches four kernels for data commutations on the four 

oundaries. Here, for simplicity, we discuss the case when the GPU 

umber a meets the requirement that 
√ 

a is an integer. We denote 

hat the time consumption for sending a single boundary node is 

 , and the time consumption to launch a kernel for data communi- 

ation is h . Thus, for mono-dimensional and block partitioning, the 

otal time consumption for message passing, which includes the 

ime for sending data and the time to launch a kernel, on a sin-

le GPU is t 1 = 2 kN + 2 h and t 2 = 4(N/ 
√ 

a + 2) k + 4 h , respectively.

he above analysis indicates that the block partitioning would be 

ore efficient when t 1 > t 2 , i.e., 2 kN − 4 Nk/ 
√ 

a > 2 h + 8 k ; in other

ords, we prefer to use block partitioning when both the domain 

ize N and the GPU number a are large. 

.3. Overlapping communications with computations 

Minimizing the communication overhead is crucial to improve 

he parallel performance of the simulations based on multi-GPUs, 

e further hide communication overhead behind the kernel run- 

ime by overlapping the communications with computations. The 

asic idea is to simultaneously execute kernels on GPUs for intense 
7 
omputation and data communications among GPUs, because GPUs 

annot control data transfer and only CPUs can manage the data 

ommunication. On devices with distinct hosts and device mem- 

ry, we can create asynchronous work queues to deal with the 

ost of PCIe data transfers. Practically, we can adopt the !$acc async 

andle in OpenACC. As illustrated in Fig. 7 (a), we first update the 

oundary nodes and put them into buffers of contiguous mem- 

ry. We then create asynchronous work queues to perform intense 

omputation for updating inner nodes, while synchronizing data of 

oundary nodes among various GPUs using MPI. Thus, the latency 

f communication can be hidden behind the computations. The 

ext task will not begin execution until all actions on the async 

ueues are complete, which can be realized using the !$acc wait 

andle in OpenACC. In Fig. 7 (b), we give an example of the thermal

B model for overlapping communications with computations. Be- 

ause the evolution of density distribution function f i and temper- 

ture distribution function g i are independent of each other within 

n iteration, we can update f i and g i alternatively to hide the com- 

unication overhead. Meanwhile, the amount of data computation 

or f i is larger than that for g i , since there are 5 components of

f i for the D3Q19 discrete lattice and 1 component of g i for the 

3Q7 discrete lattice on a surface of the subdomain, we then di- 

ide the communication of f i into three sets: f x representing the 

ensity distribution at the back and front surfaces, f y represent- 

ng the density distribution function at the left and right surfaces, 

nd f z representing the density distribution function at the bottom 

nd top surfaces. As illustrated in Fig. 7 (b), we first relax g i at the

nner nodes while communicating f z . After that, we communicate 

 i at the boundary nodes while relaxing f i at the inner nodes. Be- 

ause the relaxation of f i is the most time-consuming subroutine, 

s evident by the results obtained via NVIDIA Nsight Systems and 

epresented by the box size in the illustration drawing, we can also 

ide the communication of f y while relaxing f i at the inner nodes. 

or the communication of f x , it can be hidden by the propagation 

tep of g i and the step to calculate macroscopic variables of T . Now

hat the data communication for f and g at the boundary nodes 
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Fig. 7. Schematic illustration of ( a ) the basic idea to overlap communications with computations in OpenACC and ( b ) an example in the thermal LB model for overlapping 

communications with computations. The size of the box to represent each computation subroutine is generally proportional to its time consumption (obtained via NVIDIA 

Nsight Systems). The bounce-back routines updating the distribution functions at boundaries are neglected because they account for less than 1% of the total time. 

Fig. 8. Performanc comparisons between non-overlapping and overlapping communication with computation for ( a, c ) the 2D simulation and ( b, d ) the 3D simulation, in 

terms of ( a, b ) the MLUPS and ( c, d ) the parallel efficiency. 
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re completed within an iteration step, we do not have to over- 

ap communications for the remaining computation subroutines of 

ropagation f i and calculation macroscopic variables of u and ρ . 

Fig. 8 compares the performance of non-overlapping and over- 

apping communication with computation. We can see that the 

LUPS and parallel efficiency improved for all the cases if the 

ommunications and computations overlapped, and the advantage 

f using the overlapping mode is more obvious with the increase 

f GPU numbers. For the 3D simulations, the performance im- 

rovement is greater than that in the 2D simulations, because 

ore time for data transfer between GPU communication is hid- 

en. Excitingly, for the 3D simulation, the parallel efficiency im- 

roves from 78.7% to 97.1% when using 8 GPUs, and the MLUPS in- 

reases by 1.28X when using 16 GPUs. Previously, using the over- 

apping mode implemented in a hybrid CUDA and MPI approach, 

ian and Takayuki [48] reported the MLUPS increased by 1.24X 

ith 16 GPUs, Hong et al. [49] reported the MLUPS increased by 

.38X with 6 GPUs, suggesting a similar amount of increase in 
a

8 
he parallel performance even though we adopt the high level and 

irective-based OpenACC standard. 

.4. Concurrent computation on a GPU 

In addition to data parallelism, exploiting task parallelism can 

urther utilize the GPU hardware resources, particularly when us- 

ng a large number of GPUs, the computational tasks may not 

ully occupy the resources of the GPU, and we can concurrently 

xecute two independent tasks on a single GPU, as illustrated in 

ig. 9 (a). Practically, we can adopt the !$acc async (n) handle, 

hich launches work asynchronously in queue n . All operations in 

he same queue will execute in order, while operations in different 

ueues may execute in any order. In Fig. 9 (b), we give an example 

f the thermal LB model for concurrent computation. Because the 

volution of density distribution function f i and temperature dis- 

ribution function g i are independent of each other within an iter- 

tion, we can also update f and g in different queues. It should be 
i i 
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Fig. 9. Schematic illustration of ( a ) the basic idea of concurrently executing two independent tasks in OpenACC and ( b ) an example in the thermal LB model for concurrent 

computation. 

Fig. 10. Performanc comparisons between non-concurrent and concurrent computation for ( a, c ) the 2D simulation and ( b, d ) the 3D simulation, in terms of ( a, b ) the MLUPS 

and ( c, d ) the parallel efficiency. 
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oted that the data communication at the boundary nodes should 

e performed before the propagation step. Here, following the dis- 

ussion in Section 3.3 , we divide the communication of f i into 

hree sets, and we overlap the communication of f i and g i [see 

he blue box in Fig. 9 (b)] with computation [see the green box in

ig. 9 (b)]. 

Fig. 10 compares the performance of non-concurrent and con- 

urrent computation. We can see the MLUPS and the parallel 

fficiency slightly improves. Using 16 GPUs, the 2D simulation 

chieved 30.42 GLUPS, and the 3D simulation achieved 14.52 

LUPS. An interesting finding is that for the 2D simulation, the par- 

llel efficiency may even be greater than 100%, which may be due 

o the efficient use of the on-chip memory on the GPU, highlight- 

ng the advantage of exploiting task parallelism. Due to the high 

bility of GPU for computation, the GPU performance for the 3D 

imulation can be further boosted with the increasing of computa- 

ional load. 
9 
. Weak scaling test 

In the weak scaling test, we use a sub-domain size of 8192 ×
192 and 384 × 384 × 384 in the 2D and the 3D simulation, re- 

pectively; the iteration steps are fixed as 10 0 0 (in 2D) and 500 (in

D). Each dimension of the domain size increases similarly to that 

f increasing in GPU numbers (see Table 1 for the partition details 

f the domain). For simplicity, we only provide the performance of 

he code after adopting all the optimization strategies described in 

ection 3 . As shown in Fig. 11 , using 1 GPU, we can achieve 1932.9

LUPS and 1045.3 MLUPS in the 2D and 3D simulation (less than 

.3% deviation from that in the strong scaling test due to different 

uns), respectively. With the increase of GPU numbers, the MLUPS 

lmost increases linearly up to 16 GPUs, and the parallel efficiency 

emains above 99%. These results demonstrate that the optimized 

hermal LB code has excellent weak scalability. 
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Fig. 11. Weak scaling test: performance of ( a, c ) the 2D simulation and ( b, d ) the 3D simulation, in terms of ( a, b ) the MLUPS and ( c, d ) the parallel efficiency. 

Fig. 12. Comparison of the parallel performance on CPUs versus GPUs for ( a ) the 2D simulation and ( b ) the 3D simulation in terms of the MLUPS. The gray-dashed lines 

denote the MLUPS on a single GPU. The total number of CPU cores is N 1 × N 2 , where N 1 is the number of MPI processes and N 2 is the number of OpenMP threads per MPI 

process. Here, we fix N 2 as 14 and N 1 increases from 2 to 64. 
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. Conclusions 

In this work, we have adopted a hybrid OpenACC and MPI ap- 

roach for accelerated thermal LB simulation on multi-GPUs. The 

penACC accelerates computation on a single GPU, and the MPI 

ynchronizes the information between multiple GPUs. We adopt 

he double distribution function-based thermal LB model, namely, 

2Q9 + D2Q5 in the 2D simulation, and D3Q19 + D3Q7 in the 

D simulation. With a single NVIDIA A100 GPU, the 2D simula- 

ion achieved 1.93 GLUPS with a grid number of 8193 2 and the 

D thermal LB simulation achieves 1.04 GLUPS with a grid num- 

er of 385 3 , which is more than 76% of the theoretical maximum 

erformance. In a naive implementation to extend to multi-GPUs, 

e used mono-direction partitioning of the computation domain, 

owever, the code was not scalable to more than 8 GPUs in the 3D 

imulation. To further boost the parallel performance, we adopted 

hree optimization strategies: block partitioning, overlapping com- 

unications with computations, and concurrent computation. 

With block partitioning, the domain is decomposed in more 

han one dimension, and it decreases the amount of data that 
10 
eeds to be transferred. By overlapping the communications with 

omputations, communication overhead is hidden behind the ker- 

el runtime. Using concurrent computation, task parallelism can 

e exploited to better utilize the GPU hardware resources. After 

dopting these optimization strategies, we demonstrate that the 

arallel performance can be significantly improved. In the strong 

caling test, using 16 GPUs, the 2D simulation achieved 30.42 

LUPS and the 3D simulation achieved 14.52 GLUPS. In the weak 

caling test, the parallel efficiency remains above 99% up to 16 

PUs. It should be noted that all performance measurements are 

ased on double-precision floating-point arithmetic, which ensures 

imulation accuracy. Our results demonstrated that, with improved 

ata and task management, the hybrid OpenACC and MPI tech- 

ique is promising for thermal LB simulation on multi-GPUs. 
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ppendix A. Comparison of the parallel performance on CPUs 

ersus GPUs 

In the appendix, we summarize the MLUPS of the GPU code 

dopting the optimization strategies discussed in Section 3 . As a 

omparison, we provide the MLUPS of a CPU code, which is de- 

eloped with a hybrid MPI and OpenMP approach [50] . The CPU 

ode is based on a hierarchical two-level parallelization, where 

he first-level parallelization applies MPI domain decomposition to 

he simulation domain, and the second-level parallelization uses 

penMP parallel regions for loops within a subdomain. Such a hy- 

rid MPI + OpenMP approach can reduce the memory usage and 

verhead associated with MPI calls. For experiments on the CPU 

luster, each node is equipped with two Intel Xeon 6258R CPUs 

i.e., 56 cores within a node), we assign 4 MPI processes on each 

ode with 14 OpenMP threads per MPI process. This choice is a 

ompromise between two factors: first, more OpenMP threads re- 

uces the corresponding number of MPI processes, which leads 

o better communication performances; secondly, more OpenMP 

hreads increases the overhead associated with OpenMP constructs 

nd remote memory accesses across sockets. For all the cases in- 

estigated, our test results showed that on each node, the com- 

ination of 4 MPI processes × 14 OpenMP threads works slightly 

etter than that of 7 MPI processes × 8 OpenMP threads. We can 

ee from Fig. 12 that in the strong scaling test, both our CPU code

nd GPU code scale well. 
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