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ABSTRACT

We present a numerical study of training a self-propelling agent to migrate in the unsteady flow environment. We control the agent to utilize
the background flow structure by adopting the reinforcement learning algorithm to minimize energy consumption. We considered the agent
migrating in two types of flows: one is simple periodical double-gyre flow as a proof-of-concept example, while the other is complex turbu-
lent Rayleigh–B�enard convection as a paradigm for migrating in the convective atmosphere or the ocean. The results show that the smart
agent in both flows can learn to migrate from one position to another while utilizing background flow currents as much as possible to mini-
mize the energy consumption, which is evident by comparing the smart agent with a naive agent that moves straight from the origin to the
destination. In addition, we found that compared to the double-gyre flow, the flow field in the turbulent Rayleigh–B�enard convection exhibits
more substantial fluctuations, and the training agent is more likely to explore different migration strategies; thus, the training process is more
difficult to converge. Nevertheless, we can still identify an energy-efficient trajectory that corresponds to the strategy with the highest reward
received by the agent. These results have important implications for many migration problems such as unmanned aerial vehicles flying in a
turbulent convective environment, where planning energy-efficient trajectories are often involved.

Published under an exclusive license by AIP Publishing. https://doi.org/10.1063/5.0082845

I. INTRODUCTION

Soaring birds and gliders often use spatially and temporally local-
ized warm rising atmospheric currents to stay aloft and fly higher.1

The so-called thermal soaring behavior2 can save a vast amount of
energy by minimizing the flapping of wings for birds or motor power
supplies for gliders over long distances.3 For example, the Andean con-
dor can even soar over 5 h (covering about 172 km) without flapping.4

However, the air currents in the troposphere are turbulent; thus, using
wobbly gusts of air to stay airborne has not always been a simple task.
Ideal conditions for thermal soaring typically occur when a strong
temperature gradient between the surface of the Earth and the top of
the atmospheric boundary layer creates convective thermals. The con-
vective thermals exhibit general turbulence characterized by strongly
fluctuating flow velocities.

Learning about details of thermal soaring can improve under-
standing of the main features of flight trajectories and optimization
strategies. In 1958, MacCready5 proposed a theory on flight optimiza-
tion and gave a gliding polar curve (the relationship between horizon-
tal speed and the corresponding vertical one) to calculate the best

slope to take before an upcoming thermal. Since then, gliders have
tried to adjust their gliding speed to the expected thermal climb rate
according to their polar curve. With the aid of measured polar curves,
Akos et al.6 found that there are relevant common features in the way
that falcons and the world’s leading paraglider pilots use thermals,
which are also close to the optimal soring strategy predicted by
MacCready’s theory. To apply the above soaring strategy for an
unmanned aerial vehicle (UAV) to take advantage of thermals, Allen
and Lin7 adopted autonomous soaring algorithms to detect and exploit
thermals. He used the aircraft’s total energy state to detect and soar
within thermals and the estimated thermal size and position to calcu-
late guidance commands for soaring flight. On the other hand, rein-
forcement learning (RL) methods are promising to deliver effective
strategies of soaring flight. For example, Wharington and Herszberg8

used a neural-based algorithm to locate the thermal core. However,
they only considered the learning problem of finding the center of a
stationary thermal without turbulence. Later, Akos et al.9 demon-
strated that such simple rules would fail in the presence of velocity
fluctuations. Thus, soaring strategies that could work in real turbulent
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work are urgently needed. To identify effective soaring strategies of
flight in turbulent flows, Reddy et al.10,11 used reinforcement learning
algorithms to train gliders to travel through complex choppy air cur-
rents. Environment cues, such as an increase in the twisting force of
the wind that indicates rising air, can be sensed. However, in the work
of Reddy et al., their motivation is to train the glider to employ spiral-
ing patterns to ascend higher in regions of strong upwelling currents.
In practical flight tasks, we would also expect the UAV to fly from one
position to another while utilizing thermal soaring as much as possible
to extend the flight duration and reduce the energy consumption.12

Previously, reinforcement learning algorithms have also been
applied to navigate micro gravitactic swimmers to escape local fluid
traps and reach the highest altitude,13,14 to accumulate in regions of
intense negative vorticity,15 and to reach a target position with mini-
mal time.16–18 Shape effects (e.g., elliptical or ellipsoidal shape) of
asymmetric swimmers have also been considered with the goal of
moving upwards..19,20 In this work, our motivation is to train an active
self-propelling agent to migrate from one position to another with
minimal energy cost. This motivation stems from reducing the energy
consumption for UAVs during their flight. The rest of this paper is
organized as follows. In Sec. II, we present details for the reinforce-
ment learning algorithm to train the self-propelling agent to find an
energy-efficient trajectory. In Sec. III, we first train the agent in
the unsteady double-gyre flow,21 which is a simple periodic flow envi-
ronment with an analytical solution for the flow field, as a proof-of-
concept example. In Sec. IV, we then train the agent in the turbulent
Rayleigh–B�enard convection,22 which is a much more complex
turbulent environment with a strongly fluctuating flow field as a para-
digm for migration in the atmosphere or the ocean. In Sec. V, the
main findings of this work are summarized.

II. DYNAMICS OF THE SELF-PROPELLING AGENT
A. Optimal control via the reinforcement
learning algorithm

We aim to plan an energy-efficient trajectory for the self-
propelling agent in the unsteady flow environment. Traditional
approaches, such as the optimal navigation theory,23,24 may be sensi-
tive to small disturbances in the chaotic system. Thus, we adopt the
emerging reinforcement learning (RL) algorithm to optimize the tra-
jectory in this work.25–28 In the RL algorithm, the agent observes the
state of the environment and then decides on an action to take. If the
agent receives a reward (or a penalty) for that action, it is more likely
to repeat (or forego) the action in the future. Overall, the agent learns
by trial and error and eventually achieves its goal.29,30 In the double-
gyre flow, the observation variables include the background flow veloc-
ity ufluid, the agent’s spatial coordinates xagent, and the current time t;
in the turbulent Rayleigh–B�enard convection, we also include the fluid
temperature T in addition to the above-mentioned observation varia-
bles. The action variable is that the agent generates propelling velocity
of upropel.

The model-free reinforcement learning algorithms can generally
be classified into two categories: one is the policy optimization
method, in which the parameter h is optimized to maximize the per-
formance objective JðphÞ, and the other is the Q-learning method, in
which the agent takes action a that tried to maximize the optimal
action-value function, i.e., aðsÞ ¼ arg maxa Qhðs; aÞ. Here, s denotes
the state of the environment, ph denotes the parameterized stochastic

policy, and Qhðs; aÞ approximates the optimal action-value function
Q�ðs; aÞ. However, the policy optimization method is inefficient in
sampling, because it cannot reuse data to train the model, while the Q-
learning method tends to be less stable because it indirectly optimizes
the agent performance.31,32 A trade-off between these two methods is
the soft actor-critic (SAC) method,33 in which the actor aims to
maximize the expected reward (i.e., succeed at the task) while also
maximizing entropy (i.e., acting as randomly as possible). In entropy-
regularized reinforcement learning, the optimization problem can be
described as

p�ðhÞ ¼ arg max
p

E
s�p

X1
t¼0

Rðst ; at ; stþ1Þ þ aHðpð�jstÞÞð Þ
" #

: (1)

In the above equation, p� is the optimal policy. The reward function R
depends on the current state of the environment st, the action just
taken at, and the next state of the environment stþ1. a is the trade-off
coefficient. The entropy H of s is computed from its distribution p as
Hðpð�jstÞÞ ¼ Es�p½�logpðsÞ�. More details on the SAC method can
be found in Ref. 33.

In this work, we assume the rewards gained by the agent are
simultaneously affected by its current state, energy consumption, and
time consumption. We design the reward function as

rðtÞ ¼ rsðtÞ þ reðtÞ þ rhðtÞ: (2)

Here, rs denotes the reward contributed by the current state of the
agent. We assume that if the agent migrates out of the flow domain,
it will receive a penalty of �10; if the agent is getting closer to the
destination, it will receive a basic reward of ebasic. Thus, we can
express rs as

rs ¼
�10; agent is out of the flow domain;

ebasic; kxtþ1
agent � xgoalk2 < kxtagent � xgoalk2;

0; otherwise:

8>><
>>: (3)

Here, re denotes the reward contributed by the energy consumption of
the agent. We assume that if the propelling velocity of the agent upropel
is in alignment with that of the background flow ufluid, namely, the
angle between these two vectors is a � 90�, the agent will receive a
reward of ebasic þ ðemax � eÞ, where e ¼ 0:5kupropelk2 and ebasic
¼ emax ¼ 0:5ðkupropelkÞ2max, suggesting that when the agent migrates,
it follows the background flow direction, the higher the agent generates
propelling velocity, the lower the reward it receives; otherwise, it will
receive a penalty of �ðebasic þ eÞ, suggesting that when the agent
migrates against the background flow direction, the higher the agent
generates propelling velocity, the higher the penalty it receives. Thus,
we can express re as

re ¼ ebasic þ ðemax � eÞ; for 0� � a � 90�;
�ðebasic þ eÞ; for 90� < a � 180� :

�
(4)

Here, rh denotes the reward contributed by the time consumption of
the agent. We assume that if the agent cannot reach the destination
within a maximum time of tmax, it will receive a penalty of �5; if the
agent is within d0 from the destination (here, d0 denotes a small
threshold value), we assume the agent reaches the destination and it
will receive a reward that is inversely proportional to the time taken
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(with coefficient �) during the migration, suggesting the sooner the
agent reaches the destination, the higher the reward it receives. Thus,
we can express ht as

rh ¼
�5; t 	 tmax;

eðtmax � tÞ; kxtagent � xgoalk2 < d0;

0; otherwise:

8>><
>>: (5)

Our specially designed reward function also implies that when the
agent migrates toward the destination (i.e., kxtþ1

agent � xgoalk2
< kxtagent � xgoalk2) following the background flow direction (i.e.,
0� � a � 90�), in each timestep, reducing energy consumption will be
the agent’s primary objective, while approaching the destination will
be its second objective [because ebasic þ ðemax � eÞ > ebasic]. In addi-
tion, if the agent has to reach the destination within a short time (i.e.,
tmax is not long enough for the agent to freely explore the environ-
ment), in each episode, approaching the destination will be the agent’s
primary objective, while reducing energy consumption will be its
second objective [because E½P rh� > E½Pðrs þ reÞ�].

B. Kinematic model for the self-propelling agent

We restricted the maximum propelling velocity of the agent
upropel to be less than the largest background flow velocity, such that
intelligent planning of the agent can well utilize the background flow
structure, also to mimic the limited propulsion available in real-world
scenarios. We assume that, without control, the velocity of the agent
equals the velocity of the background fluid flow ufluid; meanwhile, the
agent can take action to generate its own relative velocity upropel. Then,
with control, we can model the agent’s velocity in the unsteady flow as
uagent ¼ ufluid þ upropel. The position of the agent is updated via the
relation dxagent=dt ¼ uagent. It is worth mentioning that the present
kinematic model for the agent is far from a realistic one in the indus-
try. Here, we adopt this simple kinematic model to disentangle the
coupling between the chaotic flow of the carrier fluid and the complex
motion of the agent. On the other hand, a more complex kinematic
model for the self-propelling agent that includes inertial and rotational
dynamics,34 flapping motion,35,36 or even the flexible motion of the
propelling agent37–39 can be considered in the future work.

III. MIGRATION IN THE UNSTEADY DOUBLE-GYRE
FLOW
A. Numerical simulation of unsteady double-gyre flow

The double-gyre flow field has the analytical description of the
velocity field. It has been used to study mixing and coherent structures
in large-scale ocean circulation. The flow is defined on a nondimen-
sional domain of ½0; 2� 
 ½0; 1�. The double-gyre velocity field is
derived from the stream function

/ðx; y; tÞ ¼ A sin pf ðx; tÞ½ �sin ðpyÞ; (6)

and the resulting velocity field is

uðx; y; tÞ ¼ �pA sin pf ðx; tÞ½ �cos ðpyÞ; (7a)

vðx; y; tÞ ¼ �pA cos pf ðx; tÞ½ �sin ðpyÞ: (7b)

In the above equations, the time dependency is introduced by

f ðx; tÞ ¼ aðtÞx2 þ bðtÞx; (8)

with time-dependent coefficient

aðtÞ ¼ e sin ðxtÞ; bðtÞ ¼ 1� 2e sin ðxtÞ: (9)

Here, A determines the magnitude of the velocity vectors, e is the
amplitude of the motion of the separation point on the x axis, and x is
the angular oscillation frequency. Unless otherwise mentioned, we
adopt the parameter sets of A¼ 0.1, e ¼ 0:25, and x ¼ 2p=10 as
default values.21

B. Training results and discussion

In training, we restrict the maximum propelling velocity of the
agent along either x- or y-direction to be less than A¼ 0.1, which leads
to kupropelk2 � 0:02. We show the instantaneous trajectories for the
smart agent in the double-gyre flow in Fig. 1 (Multimedia view). We
released the agent at (2.0, 1.0) position, namely, the top-right corner in
the domain (marked by the blue square in the plot). The agent’s goal is
to reach the destination position of (0.25, 0.8), marked by the red star
in the plot, with minimal energy consumption. Here, we assume
the agent reaches the destination so long as its position is within
d0 ¼ 0:05 from (0.25, 0.8). Initially, the smart agent will move leftward
to utilize the horizontal currents in the top-right region [see Fig. 1(a)].
When the smart agent reaches the top-left corner of the right gyre at
the position around (1, 0.9), it will move downward to utilize the verti-
cal currents [see Fig. 1(b)]. After that, it will drift into the bottom-right
corner of the left gyre at the position around (1, 0.1) [see Fig. 1(c)] and
then follow the horizontal leftward and vertical upward current to
reach the destination [see Fig. 1(d)]. The smart agent follows back-
ground currents as much as possible, except at the ridge between the
two gyres around x¼ 1, where the agent will consume more energy
and drift from the right gyre to the left gyre. Because the structure of
the flow leaves its mark on the trajectories of the agents carried by
turbulent flows,40 to quantitatively describe the relationship between
the orientation of the propelling velocity vector (i.e., hpropel) and the

FIG. 1. Trajectory (black dotted line) of the smart agent in the double-gyre flow at
(a) t¼ 2.2, (b) t¼ 4.2, (c) t¼ 6.7, and (d) t¼ 8.2. The vectors denote the velocity
field of the double-gyre flow, and they are color-coded by the velocity magnitude.
Multimedia view: https://doi.org/10.1063/5.0082845.1
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orientation of the fluid velocity vector (i.e., hfluid), we calculate their
cross correlation coefficient as

C ¼ h hpropelðtÞ � hhpropeli
� �

hfluidðtÞ � hhfluidi½ �i=ðrhpropelrhfluidÞ: (10)

The resulting correlation coefficient of 0.60 suggests that the ori-
entations of the propelling velocity vector and fluid velocity vector are
statistically relevant. We also visualize the propelling velocity vector
and fluid velocity vector of the smart agent in the Appendix.

To demonstrate that the smart agent can, indeed, reduce energy
consumption, we compare the strategy of the smart agent with the
naive agent. Here, the naive agent moves straight from the origin to
the destination with constant velocity, which may be the “simplest”
way for an agent to migrate from one position to another. To make a
fair comparison on the energy consumption, we set the naive agent
spending the same amount of time ttotal as the smart agent migrating
from the origin to the destination. Thus, the velocity magnitude of the
agent is kuagentk ¼ kxgoal�xstartk=ttotal and its direction point from the
origin to the destination. In Fig. 2, we show the trajectories of the naive
agent and the smart agent, which are color-coded by the instantaneous
velocity magnitude. We can see from Fig. 2 that the naive agent
migrates slower than the smart agent, because the naive agent’s travel
distance is shorter than that of the smart agent. Although the smart
agent migrates faster, it does not indicate that the smart agent will con-
sume more energy because the smart agent can utilize the flow cur-
rents to save energy.

To make a quantitative comparison, we plot the time series of
accumulative energy consumed by the agents, which is calculated as

EpropelðtÞ ¼
ðt
0

1
2
kupropelðsÞk2ds: (11)

In this work, we assume the agent generates its own velocity of upropel,
which is responsible for its energy consumption. As shown in
Fig. 3(a), we can see that both agents consume almost the same
amount of energy during the initial period (i.e., around t< 6), which is
due to similar trajectories in the flow field (see Fig. 2), and both agents
migrate in the top area of the right gyre. After that (i.e., around t> 6),
the smart agent moves downward to utilize the flow currents, while
the naive agent continues to move straight toward the destination.
Crossing the ridge of the gyre and migrating reversely against the flow
currents will require substantial energy consumption, as evident from
the much higher energy consumption at t< 6 for the naive agent [see
Fig. 3(a)]. We also compare the accumulative total kinetic energy of
the agents [see Fig. 3(b)], which is calculated as

EtotalðtÞ ¼
ðt
0

1
2
kuagentðsÞk2ds: (12)

After reaching the destination, the accumulative total kinetic energy of
the smart agent is more than twice that of the naive agent, while the
smart agent only consumed almost one-fifth of the energy, suggesting
the smart agent can efficiently utilize the energy provided by the back-
ground flow.

In the following, we test the robustness of the energy-efficient
strategies with respect to the flow control parameters. We varied e in
the range of 0:025 � e � 2:5 while keeping A and x fixed as the
default values. The resulting optimized trajectories show minor differ-
ences, suggesting energy-efficient strategy is robust with the changes in
the magnitude of oscillation in the x-direction. Similarly, we varied x
in the range of 0:2p=10 � x � 2p while keeping A and e fixed as the
default values. The resulting optimized trajectories show minor differ-
ences, suggesting energy-efficient strategy is also robust with the
changes in the angular oscillation frequency. We then vary A in the
range of 0:01 � A � 1 while keeping e and x fixed as the default val-
ues. As shown in Fig. 4, the resulting optimized trajectories show

FIG. 2. Comparison of trajectories in the double-gyre flow for (a) a naive agent
moving straightly and (b) a smart agent utilizing the flow structure to save energy.
The trajectories are color-coded by the instantaneous velocity magnitude.

FIG. 3. Comparison of the accumulative (a) energy consumption Epropel and (b) total kinetic energy Etotal of the smart agent and the naive agent in the double-gyre flow.
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significant differences: when the carrier fluid flows at a low speed [see
Figs. 4(a) and 4(b), for A¼ 0.01 and A¼ 0.05, respectively], the migra-
tion of the agent mostly depends on its own propulsion, and it slowly
approaches the destination or even cannot reach the destination; when
the carrier fluid flows at a high speed [see Figs. 4(e) and 4(f), for
A¼ 0.2 and A¼ 1.0, respectively], the migration of the agent is signifi-
cantly influenced by the carrier flow, and it may miss the destination
or even drift out the flow domain. We also slightly increase or decrease
20% of the A value [see Figs. 4(c) and 4(d), for A¼ 0.08 and A¼ 0.12,
respectively], and the resulting optimized trajectories show minor dif-
ferences. Thus, the optimized energy-efficient strategy is not sensitive
to small perturbation of the magnitude of the velocity vectors, but it
certainly changes when the magnitude of the velocity vectors varies in
a larger range.

We finally show the episode rewards as a function of time steps
during the training process. In Fig. 5, the discrete blue dots represent
the accumulated rewards obtained by the agents at each episode, and
the orange line represents the smooth average of the rewards during a
short-time window of 100 episodes. A reward value around �10 indi-
cates that the agent migrates outside of the flow domain received a
penalty; a reward value between�5 and 0 indicates that the agent nei-
ther migrates outside of the flow domain nor reaches the destination,
but it is trapped in a gyre and its trajectories form loops; a reward
value around 5 indicates that the agent reaches the destination, yet, it
takes a high energy consumption and a long migration time; a reward
value around 10 indicates that the agent can successfully reach the
goal with minimal energy cost and migration time. We can see from
Fig. 5 that, initially (i.e., for timesteps less than 50 000), the agent per-
forms a random policy, and it is more likely to receive a penalty. It
migrates outside of the flow domain or does not reach the destination.
During the timesteps between 50 000 and 100 000, the agent has more
chances to reach the destination and receives a positive reward.
However, the agent may still fail the migration task due to additional

explorations, which is a feature of the underlying governing reinforce-
ment learning algorithm. For timesteps larger than 100 000, the orange
line gradually reaches a plateau with positive rewards, suggesting the
training process converges. In Fig. 5, we also include trajectories for
one failure model (with a reward around �5) and one successful
model with moderate reward (around 5). For the failure model, we
can see the agent only oscillates inside the right gyre, and its trajectory
forms periodic orbits. For the successful model with moderate reward,
the agent bypass yet misses the destination for the first time. It can
then drift with the background flow and reach the destination for the
second time.

The above results are obtained with the prescribed and fixed ori-
gin and destination positions for the agent. We further test the robust-
ness of the energy-efficient strategies with respect to random positions

FIG. 4. Trajectories for the smart agent in the double-gyre flow with various control parameters of the flow field: (a) A¼ 0.01, (b) A¼ 0.05, (c) A¼ 0.08, (d) A¼ 0.12, (e)
A¼ 0.2, and (f) A¼ 1.0. The trajectories are color-coded by the instantaneous velocity magnitude.

FIG. 5. The episode rewards as a function of timesteps during the training process.
The discrete blue dots represent rewards obtained by the agents at the different
episodes, and the orange line represents a smooth average of the rewards during a
short-time window of 100 episodes. The insets include trajectories for one failure
model, one successful model with moderate reward, and the successful model with
the highest reward.
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of the origin and the destination. We choose the origin position in the
right-half of the domain (i.e., 1 < x < 2 and 0 < y < 1) and the desti-
nation position in the left-half of the domain (i.e., 0 < x < 1 and
0 < y < 1). We performed 100 experiments with various origin and
destination positions, and three typical optimized trajectories are
shown in Figs. 6(a)–6(c). We can see that the smart agents always try
to utilize the current of the carrier flow as much as possible. In addi-
tion, we calculate their accumulative energy consumption compared
to that of the naive agents, and we plot the results in Figs. 6(d)–6(f).
We can see that the smart agents still consume far less energy com-
pared to the naive agents with the randomly chosen origin and desti-
nation positions.

IV. MIGRATION IN THE TURBULENT
RAYLEIGH–B�ENARD CONVECTION
A. Numerical simulation of the turbulent
Rayleigh–B�enard convection

We consider an incompressible thermal flow in the
Oberbeck–Boussinesq approximation. The temperature is treated as
an active scalar, and its influence on the velocity field is realized
through the buoyancy term. The governing equations read as22

r � u ¼ 0; (13a)

@u
@t

þ u � ru ¼ � 1
q0

rP þ �r2uþ gbTðT � T0Þŷ ; (13b)

@T
@t

þ u � rT ¼ aTr2T; (13c)

where u ¼ ðu; vÞ, P, and T are velocity, pressure, and temperature of
the fluid, respectively. q0 and T0 are the reference density and temper-
ature, respectively. ŷ is the unit vector parallel to the gravity. g is the
gravity acceleration value. �, bT, �, and aT are the kinetic viscosity,

thermal expansion coefficient, kinematic viscosity, and thermal diffu-
sivity of the fluid, respectively. We adopt the lattice Boltzmann (LB)
method as the numerical tool to solve the above equations. The advan-
tages of the LB method include easy implementation and paral-
lelization.41–43 More numerical details on the LB method and
validation of the in-house code can be found in our previous
work.44,45 In simulation, the top and bottom walls of the convection
cell are kept at constant cold temperature Tcold and hot temperature
Thot, respectively; while the other two vertical walls are adiabatic. All
four walls impose no-slip velocity boundary conditions. The dimen-
sion of the cell is L
H, and we set L ¼ 2H in this work. Simulation
results are provided for the Prandtl number of Pr ¼ �=a ¼ 0:71 and
the Rayleigh number of Ra ¼ gbTðThot � TcoldÞH3=ð�aÞ ¼ 108. The
Pr corresponds to the thermal properties of air, while the Ra is far less
than that in the atmosphere due to the limitation of computational
resources to simulate ultra-high Ra convection. Nevertheless, we can
observe the large-scale coherent structure consisting of two primary
rolls horizontally stacked in the simulation domain.46–48

B. Training results and discussion

In training, we restrict the maximum propelling velocity of the
agent along either x- or y-direction to be less than 0.02, which leads to
kupropelk2 � 0:0008. We show the instantaneous trajectories for the
smart agent in the turbulent Rayleigh–B�enard convection in Fig. 7
(Multimedia view). We released the agent at (2.0, 1.0), namely, the
top-right corner in the domain (marked by the blue square in the
plot). The agent’s goal is to reach the destination position of (0.25,
0.8), marked by the red star in the plot with minimal energy consump-
tion. Initially, the smart agent will move downward to utilize the verti-
cal currents in the top-right region [see Fig. 7(a)]. When the agent
reaches the bottom-right corner of the right roll, it will move leftward

FIG. 6. (a)–(c) Trajectories for the smart agent in the double-gyre flow and (d)–(f) the corresponding accumulative energy consumption compared to that of the naive agent.
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to utilize the horizontal currents [see Fig. 7(b)]. After that, it will drift
into the bottom-right corner of the left roll [see Fig. 7(c)] and then fol-
low the vertical upward current to achieve thermal soaring. When
the agent reaches the same altitude as the destination, it will move
leftward to utilize the horizontal current [see Fig. 7(d)]. The smart
agent tries to follow the background currents as much as possible,
which is similar to that in the double-gyre flow. In addition, the
correlation coefficient between the orientation of the propelling
velocity vector (i.e., hpropel) and the orientation of the fluid velocity
vector (i.e., hfluid) is 0.59, suggesting the statistical relevance
between them.

In the turbulent Rayleigh–B�enard convection, we also compare
the smart agent with the naive agent that moves straight from the ori-
gin to the destination. In Fig. 8, we show naive and smart agents’ tra-
jectories, which are color-coded by the instantaneous velocity
magnitude. We set the naive agent spending the same time as the
smart agent to migrate from the origin to the destination. The naive
agent migrates slower than the smart agent, because it travels a shorter
distance than the smart agent. The trajectories differences for the
smart agent in the double-gyre flow (see Fig. 1) and the turbulent

Rayleigh–B�enard convection (see Fig. 7) are mainly due to the rota-
tional direction of the primary vortex in the flows, while the underly-
ing principles to utilize the flow structure to save energy remain the
same for the smart agent.

We then plot the time series of accumulative energy consumed
by the naive and smart agents in Fig. 9(a). We can see that both agents
consume almost the same amount of energy during the initial period
(i.e., around t<10). The reason is that the background flow velocity is
relatively small [i.e., around Oð10�5Þ near the origin position], and the
migration of both agents heavily relies on their own propelling energy.
After that (i.e., around t>10), the smart agent moves downward to
utilize the flow currents, while the naive agent continues to move
straight toward the destination. Migrating reversely against the flow
currents and crossing the edge of the roll will require substantial
energy consumption, as evident from the significant increase in energy
consumption at t>10 [see Fig. 9(a)]. The results suggest that in turbu-
lent flows with strong background flow velocity fluctuations, the smart
agent can still save energy consumption while migrating to the desti-
nation. We also compare the accumulative total kinetic energy of the
agents [see Fig. 9(b)]. After reaching the destination, the total kinetic
energy of the smart agent is triple as that of the naive agent, while the
smart agent consumed almost one-third of the energy.

We show the episode rewards as a function of time steps during
the training process in Fig. 10. The discrete blue dots represent
rewards obtained by the agents at the different episodes. A reward
value around �10 indicates that the agent migrates outside of the flow
domain received a penalty; a reward value between �5 and 0 indicates
that the agent neither migrates outside of the flow domain nor reaches
the destination but is trapped in the right roll and oscillates inside the
right roll; a reward value around 10 indicates that the agent can suc-
cessfully reach the goal with minimal energy cost and migration time.
We can see from Fig. 10 that the training processes for the agent in the
turbulent flows can hardly converge in contrast to that in the simple
periodic double-gyre flow. The main reason is that the flow field in the
turbulent Rayleigh–B�enard convection exhibits more substantial fluc-
tuations, and the migrating agent controlled by the reinforcement
learning algorithm is more likely to explore different migration strate-
gies in each episode. We determine the policy p�ðhÞ that associated
with the highest reward as the optimal policy, and we then train the
agent with p�ðhÞ to obtain the trajectory corresponding to the “best
model.” Due to the fluctuations of the flow field in the turbulent
Rayleigh–B�enard convection, the trajectories generated by p�ðhÞ may
be slightly different in different runs. In Fig. 10, we include trajectories
for two failure models (with a reward around �5 and �10, respec-
tively) and one successful model with the highest reward (around 10).
For the failure models, we can see the agent either oscillates in the right
roll and does not drift into the left roll (around �5) or migrates out-
side of the domain (around�10).

The above results are obtained with observation variables includ-
ing flow velocity, the agent’s spatial coordinates, and current time;
however, in the turbulent Rayleigh–B�enard convection, the tempera-
ture acts as an active scalar that influences the velocity; thus, in Fig. 11,
we further show the episode rewards in which the fluid temperature is
also considered as additional observation variables during the training
process. We can see that including temperature as sensorimotor,
indeed, improves the average episode rewards during the training pro-
cess, as evident there are more chances for the agent to obtain a high

FIG. 7. Trajectory (black dotted line) of the smart agent in the two-dimensional tur-
bulent Rayleigh–B�enard convection at (a) t¼ 15, (b) t¼ 30, (c) t¼ 45, and (d)
t¼ 65. The contour shows the temperature field, and the vectors denote the veloc-
ity field of the convection. Multimedia view: https://doi.org/10.1063/5.0082845.2

FIG. 8. Comparison of trajectories in the Rayleigh–B�enard convection for (a) a naive
agent moving straightly and (b) a smart agent utilizing the flow structure to save
energy. The trajectories are color-coded by the instantaneous velocity magnitude.
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episode reward. On the other hand, we checked the optimized trajecto-
ries and the associated energy consumptions of the agents, and we
found that including temperature as sensorimotor only slightly
changes the optimized policy.

V. CONCLUSIONS

In this work, we performed training of the self-propelling agent to
migrate in a flow environment with the reinforcement learning
algorithm. The smart agent that migrates in both the two-dimensional
periodical double-gyre flow and two-dimensional turbulent
Rayleigh–B�enard convection can learn to migrate from one position to
another while utilizing the background flow currents as much as possi-
ble. We calculated the energy consumption for the naive agent that
moves straight from the origin to the destination. The results show that
the smart agent consumed less than one-fifth (or one-third) of energy
compared to the naive agent in the periodical double-gyre flow (or the
turbulent Rayleigh–B�enard convection). In addition, we found that
compared to the double-gyre flow, the flow field in the turbulent
Rayleigh–B�enard convection exhibits more substantial fluctuations, and
the training agent is more likely to explore different migration strategies.
Despite that the training process is challenging to converge for the smart
agent in a turbulent environment, we can identify an energy-efficient tra-
jectory that corresponds to the strategy with the highest reward received
by the agent. We also found that including temperature as sensorimotor
improves the average episode rewards during the training process in the
turbulent Rayleigh–B�enard convection, while the optimized trajectories
and the associated energy consumption of the agents almost remain
unchanged. As pointed out by Laurent et al.,40 there are opportunities to
harness the energy of turbulence, particularly for person-less transport
and small reconnaissance aircraft. Thus, similar processes could very
well be optimized in other migration involving a self-propelling agent
such as UAVs flying in a turbulent convective environment.
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FIG. 9. Comparison of the accumulative (a) energy consumption Epropel and (b) total kinetic energy Etotal of the smart agent and the naive agent in the Rayleigh–B�enard convection.

FIG. 10. The episode rewards as a function of timesteps during the training pro-
cess. The discrete blue dots represent rewards obtained by the agents at the differ-
ent episodes, and the orange line represents a smooth average of the rewards
during a short-time window of 100 episodes. The insets include trajectories for two
failure models and the successful model with the highest reward.

FIG. 11. The episode rewards as a function of timesteps during the training pro-
cess. Different from the results presented in Fig. 10, here, we also include tempera-
ture as sensorimotor during the training process.
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APPENDIX: PROPULSION VELOCITY VECTOR OF THE
SMART AGENT IN THE DOUBLE-GYRE FLOW

We show the propulsion velocity vector of the smart agent in
different locations in Fig. 12, which further clarify the dynamics of
the smart agent in the double-gyre flow. The smart agent utilizes
background currents as much as possible, as evident that the angle
between the propelling velocity vector (the black vector) and the
fluid velocity vector (color-coded vectors) is generally less than 90�

at the same location.
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