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a b s t r a c t 

We propose a curved lattice Boltzmann boundary scheme for thermal convective flows with Neumann 

boundary condition. The distribution function at the fluid-solid intersection node is obtained to accom- 

plish the interpolation of unknown temperature distribution function at the boundary point. Specifically, 

the distribution function is first extrapolated from the fluid point along the lattice link; and then, the 

one in the opposite direction is evaluated by the anti-bounce back rule with wall temperature, which 

can be further determined by the specified Neumann boundary condition at the fluid-solid interface. The 

advantage of our scheme is that the involved inter/extrapolations are completely link-based, resulting in 

a quite efficient implementation procedure. Furthermore, our scheme has second-order spatial accuracy, 

and we verified in four numerical examples where analytical solutions are available: the heat transfer in 

a channel with a sinusoidal temperature gradient, the thermal diffusion in an annulus, and the conjugate 

heat transfer for these two cases. To further validate our scheme for thermal convective flow problems 

with complex geometries, we simulate the natural convection in an annulus, the thermal flow past a 

cylinder, and the mixed convection in a lid-driven cavity with a circular enclosure. The simulation results 

are consistent with existing benchmark data obtained by other methods. 

© 2020 Elsevier Ltd. All rights reserved. 
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. Introduction 

In the past three decades, the lattice Boltzmann method (LBM)

as been developed as a convenient solver for the Navier-Stokes

N-S) equations to simulate fluid flow problems [1,2] . To describe

uid flows coupled with heat transfer, the convection-diffusion

CD) equation is further combined with the N-S equations. Due

o the advantages of the LB method including easy implementa-

ion and parallelization [3] , effort s have been devoted to extend-

ng the LB method to thermal convective flow problems [4,5] , for

xample, the double distribution function approach which consists

f the velocity distribution function and temperature distribution

unction to solve the CD equation. The double distribution function

pproach has excellent numerical stability, and it has been used for

atural, forced and mix convection flows [6,7] . 

Different types of boundary condition between fluid and solid

nterface should be handled when simulating thermal convective

ows, which is transformed to identify the unknown distribution

unction coming from the solid zone during the streaming step
∗ Corresponding authors. 
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n LBM. For straight and curved surfaces, a lot of hydrodynamic

oundary schemes have been proposed when using the LBM to

olve the N-S equations. The no-slip velocity boundary condition

n that scenario can be easily enforced through the simple bounce-

ack (BB) scheme [8] , the interpolated bounce-back scheme [9] ,

nd the non-equilibrium extrapolation (NEE) scheme [10] . It should

e noted that the latter two schemes are specially designed for

urved boundaries, where a relative distance from the boundary

o the interface is introduced to improve the spatial accuracy com-

ared with that of simple BB scheme. In the case of thermal con-

ective flows, the CD equation should be solved with specified

emperature or heat flux boundary condition (i.e., the Dirichlet or

eumann boundary condition) between the fluid-solid interface. 

If the wall temperature is known (i.e., the Dirichlet boundary

ondition), the treatment for straight and curved boundaries are

imilar to the hydrodynamic counterpart. For instance, the NEE

cheme proposed by Guo et al. [10] has been applied to simulate

he unsteady Taylor-Couette flow [11] , the heat transfer in a cavity

12] , and the natural convection in eccentric annulus [13] , respec-

ively. Khazaeli et al. [14] and Mohsen et al. [15] also presented the

hermal version of the hydrodynamic ghost fluid (GF) scheme pro-

osed by Tiwari et al. [16] . It should be noted that both the exten-
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http://www.elsevier.com/locate/hmt
http://crossmark.crossref.org/dialog/?doi=10.1016/j.ijheatmasstransfer.2020.119345&domain=pdf
mailto:taoshi@dgut.edu.cn
mailto:chenbm@dgut.edu.cn
https://doi.org/10.1016/j.ijheatmasstransfer.2020.119345


2 S. Tao, A. Xu and Q. He et al. / International Journal of Heat and Mass Transfer 150 (2020) 119345 

Fig. 1. Schematic of the current curved Neumann boundary condition. x A is the 

boundary node with unknown distribution functions. x W and x B are the intersection 

point and the nearest fluid node along the intersection direction, respectively. 

Fig. 2. Schematic of the channel and the boundary conditions. 
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sions mentioned above decompose the distribution function into

the equilibrium and the non-equilibrium parts. The former portion

is obtained by the interpolated macroscopic quantities, while the

latter portion is evaluated through extrapolation. Therefore, both

NEE and GF schemes fall into the non-equilibrium extrapolation-

type schemes, and their extensions to the thermal convective flows

are quite straightforward. However, significant modifications are

needed to develop thermal boundary conditions based on the sim-

ple BB schemes. Zhang et al. [17] first demonstrated that the anti-

bounce back rule should replace the original one in thermal con-

vective flows. However, in their boundary scheme, the relative dis-

tance from the boundary to the interface was not involved, and it

was essentially a simple anti-bounce back method with the first-

order accuracy for curved geometries. Chen et al. [18] subsequently

improved that approach with an interpolated temperature at the

middle of a lattice link, and they showed the modified scheme has

second-order accuracy for the temperature field. 

There are also many thermal convective flow problems where

the macroscopic constraint is heat flux at the fluid-solid interface,

i.e., the Neumann type boundary condition [38,39] . Due to the sim-

plicity in the Dirichlet boundary treatment, it is straightforward to

identify the boundary temperature and then transform the Neu-

mann type into the Dirichlet type boundary conditions. Hence, the

normal derivative in the macroscopic heat flux constraint was re-

placed with various finite difference schemes in previous studies.

Liu et al. [19] reported a three-point scheme for the straight ther-
al wall to obtain the surface temperature. For curved geometries,

hang et al. [17] proposed a simple anti-bounce back method, in

hich a first-order finite difference scheme was applied to cal-

ulate the heat flux and arbitrarily evaluated along with the lat-

ice link. However, heat flux is temperature derivative in the nor-

al direction, and it generally not consistent with the lattice link.

ue to such surface heterogeneity, Chen et al. [18] modified the

bove simple BB scheme with an interpolated rebounding tem-

erature and normally discretized heat flux with the same first-

rder finite difference method. A bilinear interpolation scheme

omputed the unknown fluid temperature. Due to the first-order

pproximation of normal derivative, those mentioned above finite

ifference-based schemes [17,18] are just first-order spatial accu-

ate for the Neumann boundary conditions. Note that recently one

ore interpolation point is introduced to approximate the temper-

ture derivative at the interface [41,42] . On the other hand, the

symptotic analysis technique was used to construct the Neumann

chemes. The unknown distribution function was considered to be

 combination of several known distribution functions, and their

eights were determined through the asymptotic theory. Huang

t al. [20] first proposed a one-point Neumann scheme for the

urved boundaries; however, their scheme suffers from low accu-

acy and numerical instability issues. They subsequently presented

n improved version with second-order spatial accuracy [21] . In

uang et al.’s scheme, the curved boundary was approximated by

ig-zag lines, and the normal derivative at the boundary node was

valuated with the combination of first- and second-order normal

erivatives of the auxiliary points. The implementation procedure

as complicated and difficult to be applied in the simulation of

omplex thermal convective flows [22,23] . Li et al. [24,25] pro-

osed a Neumann boundary condition based on the asymptotic

heory. They convert the normal direction of the boundary into

erivative conditions in the lattice link directions; however, their

cheme involves complex analysis of topological geometric and is

f first-order spatial accuracy. 

The above-mentioned finite difference and asymptotic analysis-

ased Neumann boundary schemes generally suffer low accuracy

nd complicated implementation procedure. In this work, we aim

o propose an efficient second-order accurate Neumann scheme

or thermal convective flows with complex geometries. The macro-

copic heat flux constraint is evaluated by the moment of the non-

quilibrium distribution functions. With the distribution functions

t the fluid-solid interface obtained by second-order extrapolation

nd anti-bounce back rule, the wall temperature can be deter-

ined through the root-finding. The unknown distribution func-

ion is then interpolated from the distribution functions along with

 lattice link. The remaining part of the paper is organized as fol-

ows: In Section 2 , we provide the numerical method; in Section 3 ,

e validate the proposed numerical scheme through seven ex-

mples; in Section 4 , we summarize the main conclusions of the

resent work. 

. Numerical method 

The incompressible viscous thermal flow is generally subjected

o the N-S and CD equations as 

. u = 0 , (1)

∂u 

∂t 
+ u . ∇u = − 1 

ρ
∇p + ν∇ 

2 u + a g , (2)

∂T 

∂t 
+ ∇ . (u T ) = κ∇ 

2 T , (3)

here u , ρ , p, ν , T and κ are the velocity, density, pressure, kinetic

iscosity, temperature and thermal diffusivity of fluid, respectively.
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Fig. 3. Isotherms (a) and the temperature profiles at three positions (b) for the channel with τ T = 0.6, q = 0.2 and N = 30. 

Fig. 4. The convergence rates of the temperature (a) and the temperature gradient (b) with different grid resolutions. 

Fig. 5. The convergence rates with the LBGK and MRT collision models at τ T = 0.6 

and q = 0.3. 
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Fig. 6. Schematic of two-fluid channel with convection-diffusion process. 
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n the momentum equation, the body force a g is for introducing

he buoyancy force from the temperature filed. With the Boussi-

esq approximation, it is usually expressed as 

 g = g 0 α(T − T 0 ) j. (4) 

ere, g 0 is the acceleration of gravity, α is the thermal expansion

oefficient, T 0 is the average temperature of the fluid, and j is the

nit vector in the vertical direction. 

.1. Lattice Boltzmann method for fluid flows and heat transfer 

The double distribution population approach is considered to be

apable of a wide range of temperature variations and has excel-

ent numerical stability [7,26,27] . It is hence implemented in the
resent study to solve the above N-S and CD equations, where two

ets of distribution functions, f i ( x , t ) and g i ( x , t ) for the velocity and

emperature fields are adopted, respectively 

f i ( x + e i δt , t + δt ) − f i ( x , t ) = −
(
M 

−1 SM 

)
i j 

(
f j − f eq 

j 

)
+ δt F i , 

×i = 0 , 1 , ..., 8 . (5) 

 i ( x + e i δt , t + δt ) − g i ( x , t ) = − 1 

τT 

(
g j − g eq 

j 

)
, i = 0 , 1 , ..., 4 . 

(6) 
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Fig. 7. Isotherms (a) and the temperature profiles at three positions (b) for the channel flow with q = 0.3. 

Fig. 8. The convergence rates of the temperature at q = (0.25, 0.5, 0.75) (a) and q = (0.01, 0.99) (b) with different grid resolutions. H = 1/ δx . 

Fig. 9. Schematic of the pure diffusion between two concentrated cylinders. 
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Here, e i is the lattice velocity, x the position, t the time, and δt is

the temporal step. M is the transform matrix and S the relaxation

matrix in the multi-relaxation-time (MRT) collision model [28] . f eq 

and g eq are the Maxwellian-type equilibrium distribution functions,

which are typically evaluated by the density ρ , velocity u and tem-

perature T of the fluid as 

f eq 
j 

= ω j ρ

[
1 + 

e j . u 

c 2 s 

+ 

( e j . u ) 
2 

2 c 4 s 

− u 

2 

2 c 2 s 

]
, g eq 

j 
= ω j T 

[
1 + 

e j . u 

c 2 s 

]
, 

(7)

where ω j is the weight coefficient; c s = 

√ 

RT is the lattice sound

speed and set to be 1/ 
√ 

3 ( R is the gas constant, and δx / δt = 1 in
his paper with δx the lattice spacing). For consistency, the force

erm of F i for incorporating the buoyancy force a g should be given

y [29] 

 = M 

−1 ( I − S/ 2 ) M F , (8)

here I is the identity matrix, F = ( F 0 , F 1 , …, F 8 ), and

F̄ = ( ̄F 0 , F̄ 1 , . . . , F̄ 8 ) with 

 i = w i 

[ 

e i . a g 

c 2 s 

+ 

u a g : 
(
e i e i − c 2 s I 

)
c 4 s 

] 

, i = 0 , 1 , ..., 8 . (9)

For simplicity and without loss of generality, the D2Q9 and

2Q5 velocity models [24,37] are employed respectively for the

elocity and temperature fields. Through Chapman-Enskog expan-

ion, the macroscopic quantities, i.e., ρ , u , p, ν , T and κ can be

espectively obtained as 

ρ = 

8 ∑ 

i =0 

f i , ρu = 

8 ∑ 

i =0 

e i f i + δt a g / 2 , p = ρc 2 s , ν = c 2 s ( τs − 0 . 5 ) δt , 

×T = 

8 ∑ 

i =0 

g i , κ = c 2 s ( τT − 0 . 5 ) δt . (10)

Note that the LBGK collision model in Eq. (6) is used for solving

he CD equation in the present study. It can be replaced with a

orresponding MRT model and is rewritten as [43] 

 i ( x + e i δt , t + δt ) − g i ( x , t ) = −
(
N 

−1 �N 

)
i j 

(
g j − g eq 

j 

)
i 
, i = 0 , 1 , ..., 4 . (11)
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Fig. 10. The temperature profile between the cylinders (a) and the convergence rate (b) at two radius ratios. 

Fig. 11. The convergence rate of the temperature gradient with different grid reso- 

lutions at β = 0.3 and 0.5. 

Fig. 12. Schematic of the heat transfer in two concentrated cylinders with a conju- 

gate interface. 
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here N and � are respectively the transform and relaxation ma-

rixes as 

 = 

⎡ 

⎢ ⎢ ⎢ ⎣ 

1 1 1 1 1 

0 1 0 −1 0 

0 0 1 0 −1 

0 1 −1 1 −1 

−4 1 1 1 1 

⎤ 

⎥ ⎥ ⎥ ⎦ 

, � = diag(1 , 1 / τT , 1 / τT , 1 / τ3 , 1 / τ3 ) . 

(12) 

.2. Neumann boundary condition at the curved boundary 

The treatment of Neumann boundary condition at the curved

uid-solid interface is frequently encountered in the complex ther-

al convective flows using LBM. Similar to the Dirichlet counter-
art, the main concern is to identify the unknown distribution

unction (UDF) at the boundary node, which has at least one lattice

ink with the nodes at the opposite side of the interface. 

Distribution functions in several directions at the boundary

ode are unknown after the streaming step in LBM. Taking point

 depicted in Fig. 1 as an example, the g 1 and g 2 are UDFs. To ob-

ain g i ( x A ), the lattice link interpolation scheme can be applied as

 i ( x A ) = 

1 

1 + q 
( g i ( x W 

) + q g i ( x B ) ) , (13) 

here g i ( x B ) is known and g i ( x W 

) is unknown. The unknown g i ( x W 

)

an be obtained by the anti-bounce back scheme as [17,18,31] 

 i ( x W 

) = −g 
i 
( x W 

) + 2 ω i T ( x W 

) , (14)

here T ( x w 

) is the wall temperature at the intersection point W .

owever, two more unknowns, i.e., g 
ī 
( x W 

) and T ( x w 

) are further

ntroduced. In this study, a second-order extrapolation scheme is

sed to obtain the first variable, 

 

i 
( x W 

) = ( 1 + q ) g i ( x A ) − q g 
i 
( x B ) . (15)

Note that the streaming procedure can directly obtain g 
ī 
( x A )

nd g 
ī 
( x B ). Similarly, we have 

 k ( x W 

) = −g 
k 
( x W 

) + 2 ω k T ( x W 

) , (16)

 

k 
( x W 

) = ( 1 + q ) g k ( x A ) − q g 
k 
( x B ) . (17)

Furthermore, the distribution function at e 0 = (0, 0) is 

 0 ( x W 

) = ω 0 T ( x W 

) . (18)

So far, we can find from Eqs. (14)–(18) that at the intersection

oint W , the distribution functions are just determined by the tem-

erature T ( x W 

). 

On the other hand, for the Neumann boundary condition, the

acroscopic constraint is the normal derivative of temperature at

he fluid-solid interface, i.e., 

∂T ( x W 

) 

∂n 

= m, (19) 

here n = ( n x , n y ) is a unit vector normal to the interface

nd pointing to the fluid zone, and m is a known parameter.

q. (19) can be rewritten as 

 · ∇T ( x W 

) = m. (20)

The temperature gradient is evaluated by the moment of the

on-equilibrium distribution functions with a second-order accu-

acy as [22,23,23,45] 

T = − 1 

c 2 s τT δt 

∑ 

i 

e i [ g i − g eq ] = 

−1 

c 2 s τT δt 

( 

4 ∑ 

l=0 

e l g l − u 

4 ∑ 

l=0 

g l 

) 

. (21) 
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Fig. 13. Isotherms (a) and the temperature profile between the cylinders at θ = 0 and π /4 (b) with β = 0.5. 

Fig. 14. The convergence rate of the temperature with different grid resolutions at 

β = 0.3 and 0.5. 

Fig. 15. Schematic of the natural convection between two concentrated cylinders. 
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Then, we have 

( n x , n y ) ·
(
e i, 0 g i ( x W 

) + e 
i , 0 

g 
i 
( x W 

) − u x T ( x W 

) , e k, 1 g k ( x W 

) 

+ e 
k , 1 

g 
k 
( x W 

) − u y T ( x W 

) 
)

= −c 2 s τT δt m, (22)

with e i = ( e i ,0 , e i ,1 ). Substituting the Eqs. (14 )–(18) into Eq. (22) ,

the interface temperature can be finally determined as 

T ( x W 

) = 

c 2 s τT δt m + 2 e i, 0 g i ( x W 

) n x + 2 e k, 1 g k ( x W 

) n y 

( 2 ω i e i, 0 − u x ) n x + 

(
2 ω k e k, 1 − u y 

)
n y 

. (23)
Once the wall temperature is obtained, g i ( x W 

) is computed by

q. (14) . With g i ( x W 

) at hand, the UDF, i.e., g i ( x A ) can be finally

nterpolated from Eq. (13) . 

The linear inter/extrapolations, as can be seen in Eqs. (13) ,

15) and (17) achieve second-order accuracy. The anti-bounce

ack scheme in Eqs. (14) and (16) is also second-order accu-

ate. Furthermore, the computation of the temperature gradient

y Eq. (21) through the moment of the non-equilibrium distribu-

ion functions has second-order accuracy. Therefore, the present

eumann scheme is theoretically of second-order spatial accu-

acy. Another advantage of this scheme is that the involved in-

er/extrapolations are all based on the directions of the lattice link,

hich contributes to the easy implementation in the thermal con-

ective flow simulations. Note that the present scheme is indepen-

ent of the collision models in LBM, because of the two essential

ngredients of it, i.e., the anti-bounce back rule in Eq. (14) and the

istribution-function-based temperature gradient in Eq. (21) can be

pplied consistently to the LBGK and MRT models. Furthermore,

ith the inter/extrapolations implemented to both sides of the

onjugate interface (see Figs. 6 and 8 ), the interface temperature

 W 

can be determined, and hence the conjugate boundary condi-

ion ( Eq. (26) ) can also be handled by the present scheme. 

. Results and discussion 

In this section, we validate the current Neumann scheme

hrough seven numerical tests. We first simulate the heat trans-

er in a channel with a sinusoidal temperature gradient, and the

hermal diffusion between circular surfaces to test the spatial ac-

uracy of the scheme, where analytical results are available. We

hen simulate thermal convective flows with complex geometries,

ncluding the natural convection in an annulus, the thermal flow

ast a cylinder, and the mix-convection in a lid-driven cavity with

 circular closure. In these tests, the single-node no-slip velocity

oundary scheme [32] is adopted for the N-S equations; the single-

ode Dirichlet temperature boundary scheme proposed in our pre-

ious work [40] is chosen for the CD equation with specified tem-

erature boundary. The LBGK model is used in the simulations un-

ess otherwise specified. 

.1. Heat transfer in a channel with a sinusoidal temperature gradient

As illustrated in Fig. 2 , the height and length of the channel are

oth H = 1, which is resolved by N lattices in the simulations. A
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Fig. 16. Isotherms (a) and streamlines (b) of the natural convection in an annulus with an inner Neumann surface, at Pr = 0.7 and Ra = 5700. 

Fig. 17. The distribution of the temperature along the surface of the inner cylinder. 

Fig. 18. Schematic of the thermal flow around a cylinder with a fixed heat flux at 

the surface. 
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emperature gradient in the sine form ∂ T / ∂ y = sin(2 πx ) is imposed

n the upper wall. With x ranging from 0 to 1, the upper wall ex-

eriences a whole period of the gradient. The temperature of the

ower wall is constant with T = 1, which deviates from the second

ow of grids with an offset of (1 − q ) δx . The left and right sides of

he channel are periodic boundaries, and they locate at the middle

f the lattices. The analytical solution of the temperature field is 

 (x, y ) = 1 + 

sin (2 πx ) sinh (2 πy ) 

2 π cosh (2 π) 
. (24)

Fig. 3 presents the isotherms and temperature profiles in the

hannel at τ T = 0.6, q = 0.2 and N = 30. It can be observed that

he results agree well with the analytical solutions. Furthermore,

imulations with different grid resolutions are performed to study

he convergence rate of the temperature field, which is defined as
 2 − norm (T ) = 

√ ∑ 

( T LB (x ) − T a (x ) ) 
2 ∑ 

( T a (x ) ) 
2 

, (25)

here T a is the analytical solution of temperature given by

q. (24) , T LB is obtained by the LBM with the present Neumann

cheme, and x is for all the fluid nodes. The error of the tempera-

ure gradient is further defined to evaluate the numerical accuracy

f the current scheme, 

 2 − norm (∇T ) = 

√ ∑ 

( ∇ T LB (x ) − ∇ T a (x ) ) 
2 ∑ 

( ∇ T a (x ) ) 
2 

, (26)

here ∇ T a and ∇ T LB are the gradients of temperature calculated

y the Eq. (21) locally and Eq. (24) with a second-order finite dif-

erence scheme. According to Zhang et al. [23] , x in Eq. (26) is for

ll the internal fluid nodes, namely the boundary node that has a

attice link intersecting with walls is excluded in the Eq. (26) . Fig.

 (a) and (b) show the relative errors of the temperature and its

radient. It is clear that the convergence rates are all close to 2,

nd a second-order spatial accuracy of the present scheme is then

enerally confirmed. 

The effect of the collision model on the accuracy of the present

cheme is further tested in this flow problem. The simulations are

erformed at τ T = 0.6 and q = 0.3. The other relaxation time τ 3 is

et to be 1.5 [43] . From the results depicted in Fig. 5 , it is observed

hat both models achieve second-order spatial accuracy. 

.2. A two-fluid channel with convection-diffusion processes 

We further consider the convection-diffusion process in a chan-

el with two fluids, where the geometry arrangement is the same

s that of the one-fluid case mentioned above. The fluids are sep-

rated from the conjugate interface at y = 0.5 H , where the bound-

ry condition is specified as 

 1 = T 2 = T y , κ1 
∂T 

∂n 

∣∣∣∣
1 

= σκ2 
∂T 

∂n 

∣∣∣∣
2 

, y = 0 . 5 H, (26a)

Here, the subscripts 1 and 2 denote the fluid 1 and fluid 2, re-

pectively. σ = 1 is the volume heat capacity ratio. The bound-

ry conditions at the top and bottom walls are T ( y = 0 and

 ) = cos(2 πx / H ). A constant velocity u = ( U 0 , 0) is applied to the

ntire computational domain. The analytical solution for the tem-

erature in the channel is expressed as [44] 

 (x, y ) = 

{
Re 

{
e ikx 

[
γ1 e 

−λ1 y + (1 − γ1 ) e 
λ1 y 

]}
, 0 ≤ y ≤ 0 . 5 H, 

Re 
{

e ikx 
[
γ2 e 

−λ2 y + (1 − γ2 e 
−λ2 H ) e −λ2 (H−y ) 

]}
, 0 . 5 H ≤ y ≤ H,

(27) 
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Fig. 19. Isotherms around the cylinder (left column) and the distribution of Nu along the cylinder surface (right column). The Re = 10 (a, b), Re = 20 (c, d) and Re = 40 (e, 

f). 

 

 

s  

T  

T  

w  

b  

g  

b  

F  

t  

c

where 

γ1 = 

λ1 (a 2 3 − a 2 2 ) + χσλ2 (2 a 1 a 2 a 3 − a 2 2 − a 2 3 ) 

( λ1 + χσλ2 )(a 2 
1 
a 2 

3 
− a 2 

2 
) − ( λ1 − χσλ2 )(a 2 

1 
a 2 

2 
− a 2 

3 
) 
, 

γ2 = 

λ1 (a 2 1 a 3 + a 3 − 2 a 1 a 2 ) + χσλ2 (a 2 1 − 1) 

( λ1 + χσλ2 )(a 2 
1 
a 2 

3 
− a 2 

2 
) − ( λ1 − χσλ2 )(a 2 

1 
a 2 

2 
− a 2 

3 
) 
, 

a 1 = e −0 . 5 λ1 H , a 2 = e −0 . 5 λ2 H , a 3 = e −λ2 H . 

χ = 

κ2 

κ1 

, λ1 , 2 = 

2 π

H 

√ 

1 + 

i U 0 H 

2 πκ1 , 2 

. (28)
In the simulations, κ1 and κ2 are set to be 1/60 and 1/6, re-

pectively. The Peclet number Pe, defined as U 0 H / κ1 is fixed at 20.

he present boundary scheme is applied to the conjugate interface.

he temperature at such interface is considered to be unknown,

hich is to be determined by the constraint of the heat flux given

y Eq. (26) . The isotherm and the temperature profile in the conju-

ate channel are shown in Fig. 7 . Good agreement can be observed

etween the present results and analytical solutions from Eq. (27) .

ive sets of q = 0.01, 0.25, 0.5, 0.75 and 0.99 are considered to test

he accuracy of the scheme. The results shown in Fig. 8 again indi-

ates a second-order spatial accuracy. 
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Fig. 20. Schematic of the mixed convection in a lid-driven cavity with an insulted 

cylinder. 
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.3. Thermal diffusion between two concentrated cylinders 

As shown in Fig. 9 , the two cylinders have radii of R o and R i ,

espectively. The inner cylinder is specified with the constant tem-

erature T i = 1.5, and the outer one has a fixed heat flux at the

nterface, where the temperature gradient is ∂ T / ∂ n = m = 0.018.

hose settings are the same as Refs. [18,22] . The ratio of cylinder

adii is defined as β = R i / R o , and we chose β = 0.3 and 0.5 in the

imulation. The relaxation time of temperature distribution func-

ion is τ T = 0.8. At steady state, the temperature profile between

he two cylinders can be obtained analytically as [18] 

 (r) = T i − m R o ln ( r/ R i ) , (29)

here r is the radial distance ranging from R i to R o . 

The temperature profile between the two cylinders is shown in

ig. 10 (a), where 40 lattices resolve R o for the two cases. It can

e found that the numerical results given by the present scheme

gree well with the analytical solution. From Fig. 10 (b), we can

ee the current scheme has second-order spatial accuracy for ther-

al convective flows with complex geometry, which preserves the

recision of the original LBM. Furthermore, Fig. 11 delineates the

elative error of temperature gradient. It can be observed that the

onvergence order of temperature gradient is between 1.0 and 2.0.

rom Eq. (21) , the temperature gradient is a combination of the

on-equilibrium distribution function, which is a low-order small

uantity compared with the distribution function in LBM. And the

emperature is a summation of the distribution functions according

o the Eq. (10) . Therefore, the second-order extrapolation of dis-

ribution functions by Eqs. (15) and (17) can guarantee a second-

rder accuracy of the temperature, but not always for a tempera-

ure gradient. In general, the temperature gradient would not affect

he overall accuracy of the temperature fields, which is consistent

ith those by Zhang et al. [23] . 

.4. Heat transfer in circular domains with a conjugate interface 

The fluids are in the areas of r < R 1 and R 1 < r < R 2 , with

 1 and R 2 denote the radii of the inner and outer cylinders, re-

pectively ( Fig. 12 ). At r = R 2 , the temperature is specified as

 = cos(4 θ ) where θ is the polar angle. The interface at r = R 1 
s conjugate described by the Eq. (26) . The analytical solution for

he temperature of this system can be written as [44] 

 (r, θ ) = 

{
b 1 r 

4 cos (4 θ ) , 0 ≤ r ≤ R 1 , 

( b 2 r 
4 + b 3 r 

−4 ) cos (4 θ ) , R 1 ≤ y ≤ R 2 , 
(30) 
 1 = 

2 σ ( κ2 / κ1 ) R 

−8 
1 

R 

−4 
2 

(σκ2 / κ1 + 1) R 

−8 
1 

+ (σκ2 / κ1 − 1) R 

−8 
2 

, 

 2 = 

(σκ2 / κ1 + 1) R 

−8 
1 

R 

−4 
2 

(σκ2 / κ1 + 1) R 

−8 
1 

+ (σκ2 / κ1 − 1) R 

−8 
2 

, 

 3 = 

(σκ2 / κ1 − 1) R 

−4 
2 

(σκ2 / κ1 + 1) R 

−8 
1 

+ (σκ2 / κ1 − 1) R 

−8 
2 

. (31) 

In the simulations, σ is fixed as 1; κ1 and κ2 are set to be

/60 and 1/6, respectively. Fig. 13 delineates the isotherm and the

emperature profile of the conjugate system. It is observed that the

resent result agrees with those of the analytical solutions given

y Eq. (30) . The relative error of the temperature is depicted in

ig. 14 . The convergence rate indicates that the present scheme is

enerally second-order accurate in space. 

.5. Natural convection in an annulus 

As illustrated in Fig. 15 , the outer cylinder maintains a uni-

orm temperature T o = 0, while the inner one has a heat flux at

he surface with ∂ T / ∂ n = m = −1. The flow system is subjected

o a vertical gravity force field, and the fluid experiences a buoy-

ncy force described by Eq. (4) . In the simulation, the radii ratio

= R i / R o is fixed at 0.5, where R o and R i are the radii of the inner

nd outer cylinders, respectively. The flow is governed by two non-

imensional parameters, i.e., the Rayleigh number Ra and Prandtl

umber Pr , which are defined as 

 r = 

ν

κ
, Ra = 

g 0 αL 4 Q 

κ2 ν
, (32)

here L = ( R o − R i ) is the characteristic length resolved by 50 lat-

ices, and Q = −κ∂ T /∂ n denotes the heat flux. The characteristic

elocity of the flow can be expressed by 

 0 = 

√ 

g 0 αL 2 Q 

κ
. (33) 

In this test, we fix Pr, Ra and U 0 as 0.7, 5700 and 0.1, respec-

ively. 

Fig. 16 shows the isotherms and streamlines between the two

ylinders. It can be observed that both flow and temperature fields

re symmetric about the vertical centerline of concentric cylin-

ers. A pair of crescent-shaped vortices are formed in the annulus,

hich is located at the shoulder of the inner cylinder. Furthermore,

he fluid is heated by the inner surface, and a strong plume gener-

tes at the upper part of the annulus. All those indicates the flow

s in convection dominated regime, which is consistent with pre-

ious studies [33–35] . We further show the temperature profile on

he surface of the inner cylinder (see Fig. 17 ), and the results agree

ell with those reported in Refs. [33–35] . 

.6. Flow around a heated cylinder with constant heat flux 

As shown in Fig. 18 , the circular cylinder with diameter D is lo-

ated at (0.25 L , 0.5 H ), where L = 40 D and H = 20 D are the

ength and width of the computational domain, respectively. The

uid with constant velocity U 0 and temperature T c streams from

eft to right and is fully developed at the outlet. A temperature

radient with ∂ T / ∂ n = m = −1 is specified at the cylinder sur-

ace. The flow is governed by the Reynolds number Re = U 0 D/ ν
nd Prandtl number Pr . The Nusselt number Nu describing the heat

ransfer rate on the cylinder surface is defined as 

u = 

√ 

− ∂T 
∂n 

D 

( T − T c ) 
. (34) 
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Fig. 21. Streamlines (left column) and isotherms (right column) in the lid-driven cavity with an insulted cylinder. The values of Ri are respectively 0.01 (a,b), 1 (c,d) and 10 

(e,f). 
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In the simulation, we adopt Re = 10, 20, and 40; the Pr is fixed

as 0.7; 50 lattices resolve the cylinder diameter. 

Fig. 19 shows the isotherms around the cylinder and the distri-

bution of Nusselt number along the cylinder surface. The isotherms

( Fig. 19 (a,c,e)) are very dense in front of the cylinder, demonstrat-

ing a large temperature gradient and a high heat transfer rate in

such region. As shown in Fig. 19 (b,d,f), the Nu always reaches

the maximum and minimum values at the front and end rears of

the cylinder, respectively. Moreover, the convection intensity is en-

hanced so that the region heated by the cylinder shrinks gradually

for Re ranging from 10 to 40. Those observations are in good agree-

ment with previous studies [33–35] . 
R  
.7. Thermal flow in a lid-driven cavity with a circular enclosure 

As shown in Fig. 20 , the circular enclosure with diameter

 = 0.4 L is located at the center of the square cavity, where L = 1

s the side length of the cavity. The cold upper wall of T = T c 
onstantly moves with the velocity of U 0 = 0.05. The hot bottom

all of T = T h is stationary. The two vertical walls are adiabatic

nd stationary. The average temperature of the flow is evaluated

s T 0 = ( T h + T c )/2. The immersed circular enclosure is adiabatic at

he surface, i.e., ∂ T / ∂ n = m = 0. In the simulation, the length of

he cavity is resolved by 201 lattices, and the Pr is fixed as 0.7. The

e and Ra are defined as 

e = 

U 0 L 
, Ra = 

g 0 αL 3 ( T h − T c ) 
, (35)
ν νκ
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Fig. 22. The Nusselt number at the bottom wall of the cavity (a) and the temperature profile at x / L = 0.15 (b). 

Fig. 23. The temperature profile at x / L = 0.15 with different grid resolutions (a) and the convergence rate of the temperature (b). 
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here Re is fixed as 100, and Ra = 70, 70 0 0, and 70,0 0 0. The

ichardson number is defined as Ri = Ra /( Re 2 Pr ), the correspond-

ng Ri values are 0.01, 1 and 10, respectively. 

The streamlines and isotherms at different Ri are shown in

ig. 21 . Duo to the moving upper cold wall, the flow and temper-

ture profiles are all asymmetrical. At lower Richardson number

 Ri = 0.01), a large vortex is generated between the cylinder and

he upper wall. It shrinks and then removed with the increasing of

i from 1 to 10. Meanwhile, the small vortex at the lower-left cor-

er of the cavity disappears, and the lower-right corner grows with

 certain degree. The cold region with a temperature lower than

.1 is greatly suppressed at larger Ri . Particularly, the isotherms are

enerally perpendicular to the cylinder surface and the two ver-

ical walls of the cavity, where adiabatic conditions are specified.

ig. 22 shows the Nusselt number at the bottom wall of the cav-

ty and the temperature profile at x / L = 0.15. It can be observed

hat those results mentioned above are all in good agreement with

hose reported in Refs. [33,36] . 

We also evaluate the numerical accuracy of the present scheme

n this case. Here, we take the temperature obtained with the

nest grid as the reference solution since no analytical solution is

vailable. Fig. 23 (a) shows the temperature profile at x / L = 0.15

ith five sets of grid resolutions. We can see the result can al-

ost achieve mesh-independence at δx = 1/189. The relative er-

or of the temperature is then calculated by comparing with that

f δx = 1/189 according to Eq. (23) . The convergence rate of the

emperature is generally second-order, indicating again that the

resent scheme is second-order spatial accurate. 

. Conclusions 

In this work, we proposed a curved lattice Boltzmann boundary

cheme for thermal convective flows with Neuman boundary con-
ition. The key idea is to obtain the intermediate distribution func-

ion at the intersection node for accomplishing the interpolation of

he unknown temperature distribution function. In contrast to pre-

ious studies where the temperature is extrapolated from the fluid

odes, we extrapolated the temperature distribution function from

he fluid nodes, and the extrapolation is lattice link-based. Further-

ore, using the anti-bounce back rule, the distribution function at

he intersection point can be all obtained. The Neumann bound-

ry condition is then applied locally by the moments of the distri-

ution functions. Those features contribute to the efficient imple-

entation in the simulations. The second-order spatial accuracy of

he present scheme is verified in the heat transfer in a channel

ow and thermal diffusion between an annulus. Three additional

hermal convective flow problems with Neumann boundary condi-

ions, including the natural convection in an annulus, the thermal

ow past a cylinder, and the mixed convection in a lid-driven cav-

ty with a circular enclosure are further simulated to validate the

resent scheme for complex geometries. The simulation results are

onsistent with existing benchmark data obtained by other meth-

ds. 
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