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We present numerical simulations of three-dimensional thermal convective flows in a cubic cell at high
Rayleigh number using thermal lattice Boltzmann (LB) method. The thermal LB model is based on double
distribution function approach, which consists of a D3Q19 model for the Navier-Stokes equations to sim-
ulate fluid flows and a D3Q7 model for the convection-diffusion equation to simulate heat transfer.
Relaxation parameters are adjusted to achieve the isotropy of the fourth-order error term in the thermal
LB model. Two types of thermal convective flows are considered: one is laminar thermal convection in
side-heated convection cell, which is heated from one vertical side and cooled from the other vertical
side; while the other is turbulent thermal convection in Rayleigh-Bénard convection cell, which is heated
from the bottom and cooled from the top. In side-heated convection cell, steady results of hydrodynamic
quantities and Nusselt numbers are presented at Rayleigh numbers of 106 and 107, and Prandtl number of
0.71, where the mesh sizes are up to 2573; in Rayleigh-Bénard convection cell, statistical averaged results
of Reynolds and Nusselt numbers, as well as kinetic and thermal energy dissipation rates are presented at
Rayleigh numbers of 106; 3� 106, and 107, and Prandtl numbers of 0.7 and 7, where the nodes within
thermal boundary layer are around 8. Compared with existing benchmark data obtained by other meth-
ods, the present LB model can give consistent results.

� 2019 Elsevier Ltd. All rights reserved.
1. Introduction

Thermal convective flows occur ubiquitously in nature and has
wide applications in industry [1,2]. An in-depth understanding of
the complex transport mechanism in thermal convective flows
requires powerful experimental and computational tools. Over
the past three decades, the lattice Boltzmann (LB) method has
attracted broad interest in computational fluid dynamics and
numerical heat transfer communities due to its ability to simulate
complex flows, as well as easy implementation on various parallel
programming platforms [3–6].

The early effort to construct LB model for thermal convective
flows focused on energy-conserving LB models, where fluid den-
sity, velocity, and temperature are obtained from various moments
of the distribution function f i[7,8]. Compared with the LB model for
isothermal flows, a larger set of discrete velocities was adopted to
obtain the evolution equation of temperature. However, due to the
spurious coupling between shear and energy modes, it was
observed that the energy-conserving LB models suffer severe
numerical instability issue [9]. To avoid this issue, an alternative
approach is to treat the temperature as a scalar when the viscous
heat dissipation and compression work done by the pressure are
negligible. As a result, the temperature field is governed by a con-
vection diffusion equation (CDE), and one may either use a hybrid
scheme or a double distribution function (DDF) scheme to obtain
the temperature. In both schemes, conventional isothermal LB
model is adopted to solve fluid flows, which is essentially governed
by the Navier-Stokes equations at macroscopic level. The differ-
ence between the hybrid scheme and the DDF scheme is that,
the finite difference (FD) method is adopted to solve the target
temperature CDE in the hybrid scheme, while an additional distri-
bution function for the temperature field is introduced in the DDF
scheme. In the LB-FD hybrid scheme, implementing temperature
boundary condition is nontrivial, since boundary nodes will not
overlap for flow and temperature fields. Specifically, the FD
method requires implementing temperature boundary condition
at the fluid-solid interface, while the LB model adopts popular
half-way bounce-back scheme to mimic no-slip velocity boundary
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and it requires implementing velocity boundary condition half-
lattice off the fluid-solid interface [10].

For the above reasons, the DDF scheme based LB models have
been widely adopted to simulate thermal convective flows. The
early work of Shan [11] employed a two-component LB model
where one component represents the motion of the fluid and the
other component simulates a passive temperature field. Guo
et al. [12] constructed a thermal LB model based on incompressible
LB model to reduce compressibility errors. Through Chapman-
Enskog analysis, the incompressible Navier-Stokes equations under
the Boussinesq assumption as well as the CDE for temperature can
be obtained. Recently, Chai and Zhao [13] modified equilibrium
distribution function and used an additional source term to recover
the CDE. Huang and Wu [14] proposed to remove the deviation
term in the corresponding macroscopic CDE via treating the
divergence-free velocity field as a source term in the LB equation.
In addition to isotropic diffusion problems, efforts have been taken
to solve anisotropic CDEs via adopting the two-relaxation-time
(TRT) collision operator (e.g., the previous work of Ginzburg [15])
and multiple-relaxation-time (MRT) collision operator (e.g., the
previous work of Rasin et al. [16], Yoshida and Nagaoka [17],
Huang and Wu [18]). By adjusting the relaxation rates in the
MRT relaxation matrix, isotropy for the fourth-order error term
in corresponding macroscopic CDE can be attained [19,20]. Wang
et al. [21] simulated the incompressible thermal flows in two-
dimensional (2D) square cavity under the Boussinesq approxima-
tion. Contrino et al. [22] then used the same approach to simulate
thermally driven 2D square cavity at high Rayleigh number, and
they provided results of benchmark qualities.

In this work, we proposed a three-dimensional (3D) double dis-
tribution function (DDF) based LB model to simulate thermal con-
vective flows. A D3Q19 model for the Navier-Stokes equations to
simulate fluid flows and a D3Q7 model for the convection-
diffusion equation to simulate heat transfer were adopted. To
ensure the stability of the numerical model, relaxation parameters
were adjusted to enforce fourth-order accuracy of the thermal
model [19,20]. With this thermal LB model, we simulated the fol-
lowing two types of thermal flows: one is thermal flows in a cubic
cell with differentially heated vertical walls, the other is Rayleigh-
Bénard convection in a cubic cell heated from the below and cooled
from the above. It should be noted that both flow configurations
have been adopted as canonic flow systems for studying thermal
flows. Here we aim to provide benchmark quality results for ther-
mal convective flows in the cubic cell. The rest of the paper is orga-
nized as follows: In Section 2, we first present the 3D double-
distribution multiple-relaxation-time LB model for simulating fluid
flows and heat transfer. In Section 3, laminar thermal convection in
side-heated convection cell at Rayleigh numbers of Ra = 106 and
107, and Prandtl number of Pr = 0.71 are simulated. The conver-
gence behavior of steady results is obtained with grid up to 2573.
In Section 4, turbulent thermal convection in Rayleigh-Bénard con-
vection cell are simulated at Ra = 106; 3� 106 and 107; Pr is fixed
as 0.7 and 7, which corresponds to the working fluids of air and
water at 20 �C, respectively. The statistically averaged flow and
temperature quantities, as well as energy dissipation rates are
provided.
e0; e1; e2; e3; e4; e5; e6; e7; e8; e9; e10; e11; e12; e13; e14; e15; e16; e17; e18½ �

¼ c
0 1 �1 0 0 0 0 1 �1 1 �1 1 �1 1 �1
0 0 0 1 �1 0 0 1 1 �1 �1 0 0 0 0
0 0 0 0 0 1 �1 0 0 0 0 1 1 �1 �1
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2. Numerical method

2.1. Mathematical model for incompressible thermal flows

In incompressible thermal flows, temperature variation will
cause density variation, thus resulting in buoyancy effect. Follow-
ing the Boussinesq approximation, the temperature can be treated
as an active scalar and its influence to the velocity field is realized
through the buoyancy term. The viscous heat dissipation and com-
pression work due to pressure are therefore neglected. All the
transport coefficients are assumed to be constants. Then, the gov-
erning equations can be written as

r � u ¼ 0 ð1aÞ
@u
@t

þ u � ru ¼ � 1
q0

rpþ mr2uþ gbT T � T0ð Þẑ ð1bÞ
@T
@t

þ u � rT ¼ jr2T ð1cÞ

where u; p, and T are the fluid velocity, pressure and temperature,
respectively. q0 and T0 are reference density and temperature,
respectively. m; bT and j are the kinematic viscosity, thermal
expansion coefficient and thermal diffusivity, respectively. g is the
gravity value, and ẑ is unit vector in the vertical direction.

With the scalings

x=L0 ! x�; t=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
L0= gbTDTð Þ

p
! t�; u=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
gbTL0DT

p
! u�;p= q0gbTDTL0ð Þ ! p�; T � T0ð Þ=DT ! T� ð2Þ

Then, Eq. (1) can be rewritten in dimensionless form as

r � u� ¼ 0 ð3aÞ
@u�

@t
þ u� � ru� ¼ �rp� þ

ffiffiffiffiffiffi
Pr
Ra

r
r2u� þ T�~z ð3bÞ

@T�

@t
þ u� � rT� ¼

ffiffiffiffiffiffiffiffiffiffiffi
1

PrRa

r
r2T ð3cÞ

where the dimensionless numbers characterizing the system are
Rayleigh and Prandtl numbers, defined as

Ra ¼ gbTDTL
3
0

mj
; Pr ¼ m

j
ð4Þ
2.2. The LB model for fluid flows

In the LB method, to solve Eqs. (1a) and (1b), the evolution
equation of density distribution function is written as

f i xþ eidt; t þ dtð Þ � f i x; tð Þ
¼ � M�1S

� �
ij
mj x; tð Þ �m eqð Þ

j x; tð Þ
h i

þ dtF
0
i ð5Þ

where f i is the density distribution function. x is the fluid parcel
position, t is the time, dt is the time step. ei is the discrete velocity
along the ith direction. For the three-dimensional D3Q19 discrete
velocity model, ei can be given as
0 0 0 0
1 �1 1 �1
1 1 �1 �1

375 ð6Þ
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In the above, c ¼ dx=dt is the lattice constant. For simplicity, we
adopt c ¼ dx ¼ dt ¼ 1. M is a 19� 19 orthogonal transformation
matrix, and it is given by
M ¼
"

1j; 19e2 � 30j; 21
2 e4 � 53

2 e2 þ 12j; exj; 5e2 � 9
� �

exj; eyj; 5e2 � 9
� �

eyj; ezj;h 5e2 � 9
� �

ezj; 3e2
x � e2j;���������

3e2 � 5
� �

3e2
x � e2

� �j; e2
y � e2

z j; 3e2 � 5
� �

e2
y � e2

z

� �
j;

D
exeyj; eyezj; exezj; e2

y � e2
z

� �
exj; e2

z � e2
x

� �
eyj; e2

x � e2
y

� �
ezj

D #T*******

¼

1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

�30 �11 �11 �11 �11 �11 �11 8 8 8 8 8 8 8 8 8 8 8 8

12 �4 �4 �4 �4 �4 �4 1 1 1 1 1 1 1 1 1 1 1 1

0 1 �1 0 0 0 0 1 �1 1 �1 1 �1 1 �1 0 0 0 0

0 �4 4 0 0 0 0 1 �1 1 �1 1 �1 1 �1 0 0 0 0

0 0 0 1 �1 0 0 1 1 �1 �1 0 0 0 0 1 �1 1 �1

0 0 0 �4 4 0 0 1 1 �1 �1 0 0 0 0 1 �1 1 �1

0 0 0 0 0 1 �1 0 0 0 0 1 1 �1 �1 1 1 �1 �1

0 0 0 0 0 �4 4 0 0 0 0 1 1 �1 �1 1 1 �1 �1

0 2 2 �1 �1 �1 �1 1 1 1 1 1 1 1 1 �2 �2 �2 �2

0 �4 �4 2 2 2 2 1 1 1 1 1 1 1 1 �2 �2 �2 �2

0 0 0 1 1 �1 �1 1 1 1 1 �1 �1 �1 �1 0 0 0 0

0 0 0 �2 �2 2 2 1 1 1 1 �1 �1 �1 �1 0 0 0 0

0 0 0 0 0 0 0 1 �1 �1 1 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 �1 �1 1

0 0 0 0 0 0 0 0 0 0 0 1 �1 �1 1 0 0 0 0

0 0 0 0 0 0 0 1 �1 1 �1 �1 1 �1 1 0 0 0 0

0 0 0 0 0 0 0 �1 �1 1 1 0 0 0 0 1 �1 1 �1

0 0 0 0 0 0 0 0 0 0 0 1 1 �1 �1 �1 �1 1 1

0BBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBB@

1CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCA

ð7Þ
Choose the equilibrium distribution function as

f eqð Þ
i ¼ xiq 1þ ei �u

c2s
þ ei �uð Þ2

2c4s
� juj2

2c2s

h i
, where the weights are

x0 ¼ 1=3;x1�6 ¼ 1=18;x7�18 ¼ 1=36. Then, the equilibrium
moments m eqð Þ are

m eqð Þ ¼ q 1; �11þ 19juj2; 3� 11
2

juj2; u; �2
3
u; v; �2

3
v ; w;

�
�2
3
w; 2u2 � v2 �w2; �1

2
2u2 � v2 �w2� �

; v2 �w2;

�1
2
v2 �w2� �

; uv ; vw; uw; 0; 0; 0
�T

ð8Þ

The diagonal relaxation matrix S is given as

S ¼ diag sq; se; se; sj; sq; sj; sq; sj; sq; sm; sp; sm; sp; sm; sm; sm; sm; sm; sm
� �

ð9Þ
To ensure accurate flow boundary conditions as well as adequate
numerical stability, relaxation parameters si are choosen as
sq ¼ sj ¼ 0; se ¼ se ¼ sm ¼ sp ¼ 1=sf ; sq ¼ sm ¼ 8 2sf � 1

� �
= 8sf � 1
� �

.
Here, sf is determined by the kinematic viscosity of the fluids as

m ¼ c2s sf � 0:5
� �

dt , and cs ¼ 1=
ffiffiffi
3

p
c is the speed of sound. The forcing

term F 0
i in the right-hand side of Eq. 5 is given by
F0 ¼ M�1 I� S
2

	 

M~F ð10Þ

and the term MeF is [23,24]
M�F¼ 0; 38u � F; �11u � F; Fx; �2
3
Fx; Fy; �2

3
Fy; Fz;

�
�2
3
Fz;4uFx � 2vFy � 2wFz; �2uFx þ vFy þwFz; 2vFy � 2wFz;

�vFy þwFz; uFy þ vFx; vFz þwFy; uFz þwFx; 0; 0; 0
�T ð11Þ

where F ¼ qgbT T � T0ð Þẑ. The macroscopic density q and velocity u
are obtained from

q ¼
X18
i¼0

f i; u ¼ 1
q

X18
i¼0

eif i þ
1
2
F

 !
ð12Þ

The no-slip velocity boundary conditions at the wall can be realized
by the half-way bounce-back boundary scheme as

f�i xf ; t þ dt
� � ¼ fþi xf ; t

� � ð13Þ
where fþi xf ; t

� �
is the post collision value of the distribution func-

tion, f�i xf ; t
� �

is the distribution function associated with the velocity
e�i ¼ �ei.

2.3. The LB model for heat transfer

To solve Eq. (1c), the evolution equation of temperature distri-
bution function is written as



Fig. 1. Illustration of the side-heated convection cell.
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gi xþ eidt ; t þ dtð Þ � gi x; tð Þ ¼ � N�1Q
� �

ij
nj x; tð Þ � n eqð Þ

j x; tð Þ
h i

ð14Þ
where gi is the temperature distribution function. For the three-
dimensional D3Q7 discrete velocity model, ei can be given as

e0; e1; e2; e3; e4; e5; e6½ � ¼ c

0 1 �1 0 0 0 0
0 0 0 1 �1 0 0
0 0 0 0 0 1 �1

264
375 ð15Þ

N is a 7� 7 orthogonal transformation matrix, and it is given by

N ¼

h1j
hexj
heyj
hezj

h�6þ 7e2j
h3e2

x � e2j
he2

y � e2
z j

0BBBBBBBBBBB@

1CCCCCCCCCCCA
¼

1 1 1 1 1 1 1
0 1 �1 0 0 0 0
0 0 0 1 �1 0 0
0 0 0 0 0 �1 �1
�6 1 1 1 1 1 1
0 2 2 �1 �1 �1 �1
0 0 0 1 1 �1 �1

0BBBBBBBBBBB@

1CCCCCCCCCCCA
ð16Þ

Choose the equilibrium distribution function as

g eqð Þ
i ¼ xiT 1þ 7

6þaT
ei �u
c2s

h i
, where the weights are x0 ¼ 1� aTð Þ=7;

x1�6 ¼ 6þ aTð Þ=42. Then, the equilibrium moments n eqð Þ are

n eqð Þ ¼ T; uT; vT; wT; aTT; 0; 0½ �T ð17Þ
where aT is a constant. The relaxation matrix is given by
Q ¼ diag 0; qj; qj; qj; qe; qm; qmð Þ. The thermal diffusivity j is deter-
mined from the relaxation parameter qj as

j ¼ 6þ aT
21

1
qj

� 1
2

	 

ð18Þ

To achieve the isotropy of the fourth-order error term, Dubois et al.
[19] proposed the following relationships for the relaxation param-
eters in D3Q7 model:

1
qj

� 1
2

	 

1
qe

� 1
2

	 

¼ 1

6
ð19Þ

1
qm

� 1
2
¼ aT þ 6

1� aT

1
qj

� 1
2

	 

� 4þ 3aT
12 1� aTð Þ

1
qj

� 1
2

	 
�1

ð20Þ

From Eq. (20), we have

qm ¼
6 1� aTð Þ 2� qjð Þqj

11þ 3aTð Þ qj � 6ð Þqj þ 12 aT þ 6ð Þ ð21Þ

If and only if we take a special value of qj as

1
qj

� 1
2
¼

ffiffiffi
3

p

6
ð22Þ

then qm in Eq. 21 becomes a constant independent of aT , which is

1
qm

� 1
2
¼

ffiffiffi
3

p

3
ð23Þ

With Eq. 23, we can determine qe from Eq. 19 as

1
qe

� 1
2
¼

ffiffiffi
3

p

3
ð24Þ

In short, we have qj ¼ 3�
ffiffiffi
3

p
; qe ¼ qm ¼ 4

ffiffiffi
3

p
� 6 and

aT ¼ 42
ffiffiffi
3

p
j� 6. The macroscopic temperature T is obtained from

T ¼
X6
i¼0

gi ð25Þ
The Dirichlet boundary conditions for constant temperature can be
realized by the half-way anti-bounce-back boundary scheme as [25]

g�i xf ; t þ dt
� � ¼ �gþ

i xf ; t
� �þ 6þ aT

21
Tw ð26Þ

where Tw is the wall temperature. The Neumann boundary condi-
tions for adiabatic temperature can be realized by the half-way
bounce-back scheme as

g�i xf ; t þ dt
� � ¼ gþ

i xf ; t
� � ð27Þ
3. Laminar thermal convection in side-heated convection cell

The flow configuration for the side-heated convection cell is
shown in Fig. 1. The left and right vertical walls are kept at con-
stant hot and cold temperature, respectively; the other four walls
are adiabatic. All six walls impose no-slip velocity boundary condi-
tion. The dimension of the cell is L� D� H, and we set L ¼ D ¼ H in
this work. Simulation results are provided at Rayleigh numbers of
106 and 107; the Prandtl number is fixed as 0.71. In addition, we
need another dimensionless parameter, the Mach number that is
defined as Ma ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

gbTL0DT

p
=cs, to fully determine the parameters

in the system. Here, we fix Ma = 0.1 as a compromise to approxi-
mate the incompressibility condition as well as to enhance the
computational efficiency. With the above parameters in side-
heated convection cell, steady state can be achieved for which
the criterion is given as

P
i u xi; t þ 2000dtð Þ � u xi; tð Þk k2P

i u xi; tð Þk k2
< 10�9;P

ijT xi; t þ 2000dtð Þ � T xi; tð Þj1P
ijT xi; tð Þj1

< 10�9 ð28Þ

where uk k2 denotes L2 norm of u, and Tj j1 denotes L1 norm of T.
Fig. 2 shows the temperature fields obtained on grid

Nx � Ny � Nz ¼ 2573 at Ra = 106 and 107. The left-hand side is the
isothermal surface in the whole cell, while the right-hand side is
the temperature cross section along the x ¼ 0:5 plane. At these
two high Rayleigh numbers, thin boundary layers exist near
isothermal walls; while the temperature stratification is near-
linear in the interior region. In addition, the temperature profiles
in the x ¼ 0:5 plane generally agrees with prior 2D simulations
(see Fig. 10 in our previous work [26]); while 3D variations of



Fig. 2. Temperature fields in side-heated convection at (a, b) Ra = 106, (c, d) Ra = 107; (a, c) isothermal surface in the whole cell, (b, d) cross section at the x = 0.5 plane.
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temperature isothermal surface can be observed near the x ¼ 0 and
x ¼ 1 end walls.

To provide quantitative results, we first measure some hydro-
dynamic quantities, including the maximum horizontal velocity
vmax at the vertical centerline of the midplane (e.g., y ¼ 0:5 line
at x ¼ 0:5 plane), and its corresponding location z; the maximum
vertical velocity wmax at the horizontal centerline of the midplane
(e.g., z ¼ 0:5 line at x ¼ 0:5 plane), and its corresponding location
Table 1
Convergence behaviors of hydrodynamic quantities.

ine Ra Ref. Mesh size vmax

106 Fusegi [27] 623 0.08416

Tric [28] 813 0.08096

Wang [29] 503 0.0816

Chen [30] 101� 51� 101 0.080
Present 813 0.08056

Present 1293 0.08091

Present 1613 0.08099

Present 2573 0.08107

107 Tric [28] 1113 0.05813

Wang [29] 2003 0.0558

Chen [30] 121� 51� 121 0.0585
Present 813 0.05410

Present 1293 0.05671

Present 1613 0.05730

Present 2573 0.05789
y. In addition, we calculate the average kinetic energy E of the sys-
tem as

E ¼
1
2

R
X u xð Þk k2dxR

X dx
¼

1
2

X
i

u xið Þk k2

NxNyNz
ð29Þ

where X is the entire flow domain. The convergence behaviors of
these hydrodynamic quantities are tabulated in Table 1. We also
z wmax y E� 103

0.8557 0.2588 0.0331 –

0.8536 0.25821 0.0331 –

0.8597 0.2556 0.0347 –

0.860 0.257 0.040 –
0.8580 0.25437 0.0432 3.3346

0.8566 0.25753 0.0349 3.3280

0.8540 0.25729 0.0404 3.3265

0.8541 0.25836 0.0370 3.3248

0.8716 0.25994 0.0194 –

0.8831 0.2590 0.0233 –

0.8750 0.2606 0.0199 –
0.8951 0.25865 0.0185 1.8418

0.8798 0.26054 0.0194 1.8365

0.8789 0.26184 0.0217 1.8345

0.8774 0.26181 0.0214 1.8322
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provide existing data as comparison, such as Fusegi et al. [27] using
control-volume based finite different method with strongly implicit
scheme to accelerate convergence; Tric et al. [28] using pseudo-
spectral Chebyshev algorithm based on the projection-diffusion
method; Wang et al. [29] using discrete unified gas-kinetic scheme;
Chen et al. [30] using high-order simplified thermal lattice Boltz-
mann method. It should be noted that in the work of Tric [28],
the velocity is normalized by j=L0, as opposed to

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
gbTL0DT

p
adopted

in the present work, thus values of velocity u in their work have
been divided by

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Ra � Pr

p
for the convenience of direct comparison.

In addition, in the work of Fusegi et al. [27], Wang et al. [29], and
Chen et al. [30], the hot and cold walls are set at x ¼ 1 and x ¼ 0
planes, respectively; in the work of Tric et al. [28], the hot and cold
walls are set at y ¼ 0:5 and y ¼ �0:5 planes, respectively. These
geometry settings are not identical with present work, where the
hot and cold walls are set at y ¼ 0 and y ¼ 1, respectively. Thus,
the values of the velocity components and its corresponding posi-
tion have also gone through coordinate transformation.

We then measure Nusselt numbers to quantify the heat transfer
process. We consider the mean Nusselt number Numean at the
x ¼ 0:5 midplane along the hot wall (y ¼ 0) and the cold wall
(y ¼ 1); the overall Nusselt number Nuoverall along the hot and cold
walls. Here, Numean xð Þ and Nuoverall are defined as
Table 2
Convergence behaviors of Nusselt numbers.

Ra Ref. Mesh size Numea

y ¼ 0

106 Fusegi [27] 623 9.012

Tric [28] 813 8.8771

Wang [29] 503 8.7795

Chen [30] 101� 51� 101 9.072
Present 813 8.9985

Present 1293 8.9168

Present 1613 8.8988

Present 2573 8.8805

f1 8.8735
n 2.49

107 Tric [28] 1113 16.547

Wang [29] 2003 16.415

Chen [30] 121� 51� 121 16.457
Present 813 17.2687

Present 1293 16.8552

Present 1613 16.7378

Present 2573 16.6087

f1 16.520
n 1.93

Fig. 3. Convergence history of velocity
Numean xð Þ ¼ �
Z 1

0

@T x; zð Þ
@y


y¼0 or y¼1

dz ð30Þ
Nuoverall ¼ �
Z 1

0

Z 1

0

@T x; zð Þ
@y


y¼0 or y¼1

dx dz ð31Þ

The convergence behavior of these Nusselt numbers are tabulated
in Table 2. In addition, the asymptotic values f1 are used as the
reference values to compute the relative error, which are then
used to estimate the order of accuracy n for LB simulation. At
Ra ¼ 107, results obtained at coarse mesh size of 813 do not fit
well with the interpolating polynomial, and they have been
excluded from computing asymptotic values. Overall, the present
thermal LB model has an approximate second-order spatial
accuracy.

In Tables 1 and 2, the results given by Wang et al. [29] at
Ra = 107 were time-averaged quantities, indicating their simula-
tions did not converge to steady states; while Tric et al. [28] and
Chen et al. [30] mentioned natural convection in such a configura-
tion enters unsteady flow regime at Rayleigh number beyond 107.
Here, we present convergence histories of velocity u in Fig. 3. With
n Numean Nuoverall Nuoverall

y ¼ 1 y ¼ 0 y ¼ 1

– 8.770 –

– 8.6407 –

– 8.5428 –

– 8.741 –
0 8.99333 8.75450 8.75405

8 8.91467 8.67775 8.67746

6 8.89744 8.66075 8.66060

4 8.87994 8.64345 8.64342

8.8728 8.6369 8.6364
2.45 2.49 2.44

7 – 16.3427 –

3 16.3909 16.2112 16.1872

– 16.604 –
7⁄ 17.31377⁄ 17.03864⁄ 17.09483⁄

2 16.85465 16.64342 16.64642

7 16.73588 16.52963 16.52950

1 16.60782 16.40322 16.40285

4 16.5301 16.3124 16.3237
2.07 1.88 2.04

u at (a) Ra = 106 and (b) Ra = 107.



Table 3
The root-mean-square density fluctuation and velocity divergence.

Ra Mesh size rms density fluctuation rms velocity divergence

106 813 1:4793� 10�3 1:994� 10�2

1293 1:4794� 10�3 8:779� 10�3

1613 1:4794� 10�3 5:722� 10�3

2573 1:4795� 10�3 2:228� 10�3

107 813 1:4770� 10�3 4:183� 10�2

1293 1:4788� 10�3 2:295� 10�2

1613 1:4791� 10�3 1:617� 10�2

2573 1:4795� 10�3 7:132� 10�3
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the present LB model and the four mesh sizes of 813; 1293; 1613

and 2573, our simulations were able to reach residual errors down
to 10�9; similar convergence histories of temperature T were also
observed, but not shown here for clarity. It is worth mentioning
in numerical investigations, the bifurcation critical number
depends on the formulation, numerical method, and choice of grid.
Even for the canonical lid-driven cavity problem that only
considers incompressible isothermal flows, different researchers
presented various first bifurcation critical Reynolds numbers
[26,31].

We further show the y variation of the Nusselt number aver-
aged over x-z plane in Fig. 4. Here, the x-z plane averaged Nusselt
number is defined as

Nu yð Þ ¼
Z 1

0

Z 1

0
vT

ffiffiffiffiffiffiffiffiffiffiffi
RaPr

p
� @T

@y

	 

dx dz ð32Þ

We can see from Fig. 4, the Nusselt number oscillates near the hot
or cold walls (y ¼ 0 or y ¼ 1), which is due to lack of mesh resolu-
tion. When increasing mesh sizes, the amplitude of this small vari-
ation will decrease, and the Nusselt number will converge to a
constant.

Since the lattice Boltzmann method intrinsically solves weakly
compressible Navier-Stokes equations, to directly quantify the
compressibility effect, we then compute the root-mean-square
(rms) density fluctuation and the rms velocity divergence asffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

dqð Þ2
D Er

¼
X

i
qi � q0ð Þ2

NxNyNz

" #1=2
ð33Þ
Fig. 4. The Nusselt number averaged over x-z plane as a function of y at (a) Ra = 106 and
subfigures in the left column.
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r � uð Þ2

D Er
¼

X
i
r � uið Þ2

NxNyNz

" #1=2
ð34Þ

We can see from Table 3, both the Rayleigh number and mesh sizes
have little effects on the rms density fluctuation; while the rms
velocity divergence decreases when increasing the mesh sizes or
decreasing the Rayleigh number. The dependence of rms velocity
divergence on mesh sizes or Rayleigh number can be explained as
follows. In the present LB model, the relaxation parameters were
adjusted following the principles in TRT model, i.e.,
se ¼ se ¼ sm ¼ sp ¼ 1=sf ; sq ¼ sm ¼ 8 2sf � 1

� �
= 8sf � 1
� �

, which
leads to the bulk viscosity equal to shear viscosity as
f ¼ c2s s�1

e � 0:5
� �

dt ¼ c2s s�1
m � 0:5

� �
dt ¼ m. At fixed Rayleigh number,

increasing the mesh sizes leads to larger shear viscosity and bulk
(b) Ra = 107; subfigures in the right column are zoomed-in views of corresponding
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viscosity, thus resulting in stronger dissipation of modes related to
compressibility, and smaller rms velocity divergence; at fixed mesh
size, increasing the Rayleigh number leads to smaller bulk viscosity,
resulting in larger rms velocity divergence. On the other hand, we
notice that the simulation results reported by Ostilla-Monico et al.
[32], who used the finite difference method coupling with
multiple-resolution strategy to directly solve the Navier-Stokes
equations, also show non-solenoidal velocity field with small resid-

ual divergence of O 10�3
� �

. So far, this small magnitude of residual

divergence has not resulted in apparent problems when simulating
incompressible thermal convective flows, even for flows in turbu-
lent flow regime.

4. Turbulent thermal convection in Rayleigh-Bénard convection
cell

The flow configuration for the RB cell is shown in Fig. 5. The top
and bottom walls are kept at constant cold and hot temperature,
respectively; while the other four vertical walls are adiabatic. All
six walls impose no-slip velocity boundary condition. The dimen-
sion of the cell is L� D� H, and we set L ¼ D ¼ H in this work. Sim-
ulation results are provided at Rayleigh numbers of 106; 3� 106,
and 107, and Prandtl numbers of 0.7 and 7. The Mach number is
fixed as 0.1. The simulation protocol is as follows: first check
whether statistically stationary state has reached in every 100
dimensionless time units; after that check whether statistically
converge state has reached in every 200 dimensionless time units.

To measure global strength of the convection, the Reynolds
number based on root-mean-square (rms) velocity is defined as

Rerms ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

u2 þ v2 þw2ð ÞiV ;tH
m

�s
ð35Þ
Fig. 5. Illustration of the Rayleigh-Bénard convection cell.

Table 4
The Reynolds and Nusselt numbers in Rayleigh-Bénard convection.

Ra Pr Rerms Rerms
w Nuvol

106 0.7 208.80 145.58 8.33

3� 106 0.7 357.11 249.96 11.46

107 0.7 654.86 454.92 16.22

106 7 26.13 20.26 8.49

3� 106 7 44.56 33.65 11.12

107 7 86.41 65.71 16.16
where �iV ;t
D

denotes an ensemble average over the whole cell and

over time. Similarly, the Reynolds number based on rms vertical
velocity (i.e., parallel to gravity) is defined as

Rerms
w ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
w2iV ;tH

m

�s
ð36Þ

To measure global heat transport, the volume average Nusselt num-
ber (Nuvol) is calculated as [33,34]

Nuvol ¼ 1þ
ffiffiffiffiffiffiffiffiffiffiffi
PrRa

p
wTiV ;t
D

ð37Þ

Meanwhile, since no-slip velocity is imposed on the top and bottom
walls, the average Nusselt number over top and bottomwalls can be
calculated as

Nuwall ¼ �1
2

@zTitop;t þ @zTibottom;t

D �D�
ð38Þ

where �itop
D

and �ibottom
�

denotes an ensemble average over the top

and bottom walls, respectively. In addition, by averaging the equa-
tions of motion, we can define another two Nusselt numbers related
with global averages of kinetic and thermal energy dissipation rates
as [35,36]

Nukin ¼ 1þ
ffiffiffiffiffiffiffiffiffiffiffi
RaPr

p
euiV ;t
D

ð39Þ

Nuth ¼
ffiffiffiffiffiffiffiffiffiffiffi
RaPr

p
eTiV ;t
D

ð40Þ

where the kinetic and thermal energy dissipation rates are given by

eu x; tð Þ ¼ 1
2
m
X
ij

@uj x; tð Þ
@xi

þ @ui x; tð Þ
@xj

� �2
ð41Þ

eT x; tð Þ ¼ j
X
i

@T x; tð Þ
@xi

� �2
ð42Þ

The above rigorous relations further form the backbone of the
Grossmann-Lohse (GL) theory of turbulent heat transfer [37,38].

Table 4 tabulates the values for Reynolds and Nusselt numbers
obtained from the present simulations. If the direct numerical sim-
ulation of RB convection is well resolved and statistically conver-
gent, the above definitions of Nusselt numbers should give
results agree with each other. Here, the volume averaged Nusselt
number Nuvol is chosen as the reference value to calculate its rela-
tive differences with other Nusselt numbers, and the results
(denoted by ‘diff.’) are included in the bracket in corresponding
columns. From Table 4, we can see the differences are within 1%,
indicating that Nusselt numbers show good consistency with each
other. We further fit the data to obtain scaling relations of Rey-
nolds number and Nusselt number versus Rayleigh number using
power-law relations. For the Ra � Re scaling, we have
Rerms ¼ 0:209Ra0:499�0:004 and Rerms

w ¼ 0:154Ra0:496�0:001 at Pr = 0.7,
Nuwall (diff.) Nukin (diff.) Nuth (diff.)

8.35 (0.22%) 8.24 (1.06%) 8.26 (0.88%)

11.48 (0.23%) 11.35 (0.89%) 11.37 (0.72%)

16.27 (0.30%) 16.07 (0.96%) 16.10 (0.78%)

8.52 (0.33%) 8.46 (0.42%) 8.44 (0.57%)

11.14 (0.24%) 11.08 (0.35%) 11.06 (0.52%)

16.19 (0.16%) 16.11 (0.35%) 16.03 (0.80%)
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while Rerms ¼ 0:016Ra0:532�0:017 and Rerms
w ¼ 0:013Ra0:529�0:025 at

Pr = 7, which agree well with previous studies that Re proportional
to Ra1=2[39]. For the Ra � Nu scaling, we have
Nu ¼ 0:153Ra0:289�0:0003 at Pr = 0.7, while Nu ¼ 0:158Ra0:287�0:018 at
Pr = 7, which agree well with previous studies that Nu proportional
to Ra2=7[40,41].

Sufficiently resolved simulations would give converging Nusselt
numbers, but not vice versa. For example, Kooij et al. [42] observed
ripples in instantaneous snapshots of temperature fields near
sharp gradients when the simulation is under-resolved, even
though the Nusselt numbers from the simulations look reasonable.
Thus, we also check whether the grid spacing Dg and time interval
Dt is properly resolved by comparing with the Kolmogorov and
Batchelor scales. Here, the Kolmogorov length scale is estimated

by the global criterion g ¼ HPr1=2= Ra Nu� 1ð Þ½ �1=4, the Batchelor
length scale is estimated by gB ¼ gPr�1=2, and the Kolmogorov time
Fig. 6. Typical snapshots of the instantaneous (a, b) temperature fields, (c

Table 5
Spatial and temporal resolutions of the simulations.

Ra Pr Mesh size Dg=g

106 0.7 1293 0.48

3� 106 0.7 1933 0.46

107 0.7 2573 0.52

106 7 1293 0.15

3� 106 7 1933 0.15

107 7 2573 0.16
scale is estimated as sg ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffi
m= euh ip ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

Pr= Nu� 1ð Þp
. From Table 5,

we can see that grid spacings satisfy max Dg=g;Dg=gB

� �
6 0:52,

which ensures the spatial resolution. In addition, the time intervals
are Dt 6 0:00145sg, thus guaranteeing adequate temporal resolu-
tion. However, such a fine temporal resolution is the result of
intrinsic defects in LB time marching scheme, the small time steps
was not adopted on purpose. Specifically, the Courant-Friedrichs-
Lewy (CFL) number in LB method can be calculated as
CFLLB ¼ dt=dx ¼ dt=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
L0= gbTDTð Þp� �

= dx=L0ð Þ ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
L0gbTDT

p ¼ Ma � cs 	
0:0577, where dx ¼ dt ¼ 1; cs ¼ 1=

ffiffiffi
3

p
, and Ma = 0.1 have been used

in our simulations. In conventional numerical methods that
directly solve the Navier-Stokes equations, the CFL numbers can
be five to six times larger, leading to larger time interval. On the
other hand, it should be noted that the LB method does not require
to solve the time consuming pressure Poisson equation, which
saves the computational cost compared with the conventional
Navier-Stokes solvers. Thus, a compressive compression of the
, d) vertical velocity fields at Ra = 107, (a, c) Pr = 0.7, and (b, d) Pr = 7.

Dg=gB Dt=sg Nth
BL

tavg=tf

0.40 1:45� 10�3 8 1800

0.39 1:16� 10�3 8 400

0.43 1:05� 10�3 8 400

0.41 4:63� 10�4 8 200

0.38 3:60� 10�4 9 800

0.43 3:31� 10�4 8 800



Fig. 7. Typical snapshots of the instantaneous (a, b) logarithmic kinetic energy dissipation fields, (c, d) logarithmic thermal energy dissipation fields at Ra = 107, (a, c) Pr = 0.7,
and (b, d) Pr = 7.
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overall computing efficiency between different numerical methods
is needed in the future. In Table 5, we also estimate the number of
grid points within the thermal boundary layer, where

Nth
BL 	 H= 2Nuð Þ[43]. Around 8 nodes are used within the thermal

boundary layers in all the cases. To make sure statistically station-
ary state has been reached and the initial transient effects are
washed out, we first simulate a time period of at least 500tf . After
that, an additional averaging time tavg of at least 200tf (one case
even with 1800tf ) are simulated to reach the statistical conver-

gence state. Here, tf denotes free-fall time units tf ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
H= gbTDTð Þp

.
In addition to statistically averaged Reynolds and Nusselt num-

bers, we show instantaneous flow and temperature structures in
Fig. 6. We can observe hot and cold plumes in mushroom-like
shape detaching from both the top and bottom thermal boundary
layers of the cell. In addition, the maximum absolute value of ver-
tical velocity is higher at Pr = 0.7 (Fig. 6c) compared with that at
Pr = 7 (Fig. 6d), indicating stronger motion of upward and down-
ward moving fluids at lower Prandtl number. Fig. 7 further pre-
sents logarithmic kinetic energy dissipation fields and
logarithmic thermal energy dissipation fields. Since rising and fall-
ing thermal plumes are associated with large amplitudes of both
kinetic and thermal energy dissipation rates, intense dissipations
occur almost in regions with higher or lower temperature.

The probability density functions (PDFs) of kinetic and thermal
energy dissipation rates obtained over the whole cell are shown in
Fig. 8. All data have been normalized with respect to their root-

mean-square values, where euð Þrms ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
e2uiV ;t
Dr

and

eTð Þrms ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
e2TiV ;t
Dr

. At the same Rayleigh number, decreasing the
Prandtl number (e.g., Fig. 8b versus a, and Fig. 8d versus c) leads
to flatter tails of the PDFs; at the same Prandtl number, increasing
the Rayleigh number leads to more extended tails of the PDFs.
These trends generally agree with that in 2D square RB cells [44]
and 3D cylindrical RB cells [45], and can be explained by the pos-
itive correlations between increasing Reynolds number and
increasing small-scale intermittency of dissipation fields. To fur-
ther quantitatively describe the shape of the PDF tails, we adopt
a stretched exponential function [46,45,44]

p X�ð Þ ¼ Cffiffiffiffiffi
X�p exp �mX�a� � ð43Þ

where C; m and a are fitting parameters. X ¼ eu;T= eu;Tð Þrms and
X� ¼ X � Xmp with Xmp being the abscissa of the most probable
value. As shown in Fig. 8, the stretched exponential function
(denoted by the solid black lines) fits well with the PDF tails, with
adjusted R-squared values above 0.98.
5. Conclusions

In this work, we have presented three-dimensional LB simula-
tions of thermal convective flows at high Rayleigh number. For
both laminar thermal convection in side-heated convection cell
and turbulent thermal convection in Rayleigh-Bénard convection
cell, the present double distribution function based thermal LB
model can give results that agree well with existing benchmark
data obtained by other methods. The extensions to Rayleigh-
Bénard turbulent convection with larger parameter spaces of Ray-
leigh and Prandtl numbers will be pursued in future work.



Fig. 8. PDFs of kinetic energy dissipation rates at (a) Pr = 0.7, (b) Pr = 7; and thermal energy dissipation rates at (c) Pr = 0.7, (d) Pr = 7.
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