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We investigate thermal effects on the sedimentation behavior of elliptical particles via particle-resolved
direct numerical simulation. Two scenarios of fluid-particle heat transfer in an infinitely long channel are
considered: one is a cold particle settling in a hot fluid, while the other is a hot particle settling in a cold
fluid. Results show that when an elliptical particle sediment in a wide channel (i.e., the block ratio is
large), in addition to the two sedimentation modes reported in the literature for the particle sediments
in isothermal fluids, there exist another three modes arising from thermal effects: the tumbling mode,
the anomalous rolling mode and the inclined mode. Specifically, for a cold particle settling in a hot fluid,
we found the tumbling mode and inclined mode, while for a hot particle settling in a cold fluid, we found
the anomalous rolling mode and inclined mode. The phase diagrams of the sedimentation modes as func-
tions of Archimedes and Grashof numbers are given. Analyses of the relationship between particle
Reynolds number and Grashof number indicates that the mode presented depends on the competition
between channel wall confinement, combined forced and natural convection.

� 2018 Elsevier Ltd. All rights reserved.
1. Introduction

The motion of solid particles in a viscous fluid has wide applica-
tions in various engineering fields. For example, in suspension
redox flow batteries, the size, shape, and composition of both
active material particles and conductive material particles are
intrinsically coupled parameters affecting the rheology and trans-
port properties of suspension fluid [1]. In these scenario applica-
tions, both fluid inertia and viscosity are finite, the behavior of
the fluids and solid particles are strongly coupled, thus particle
motion shows rich physical phenomena. Among various parame-
ters affecting particle motion, particle shape plays a critical role.
During the past several decades, motion of spherical particles has
drawn much attention due to the symmetry of particle shape.
Recently, more researches focus on the motion of non-spherical
particles to truly discover real-world particle transport processes.

For a two-dimensional (2D) elliptical particle or a three-
dimensional (3D) ellipsoid particle sedimentation, eight distinct
modes have been reported [2–5]: the horizontal mode, the hori-
zontal II mode, the inclined mode, the inclined II mode, the vertical
mode, the oscillatory mode, the anomalous rolling mode and the
spiral mode. The horizontal mode refers to particle sediments hor-
izontally with a constant velocity along the centerline of channel;
while the horizontal II mode refers to particle sediments horizon-
tally with oscillating pattern. In the inclined mode, particle sedi-
ments with a constant velocity and a constant inclination to
horizontal; while in the inclined II mode, inclined particle sedi-
ments with oscillating pattern. In the vertical mode, particle sedi-
ments vertically and it can be regarded as limitation of the inclined
mode with inclination angle of 90�. The oscillatory mode means
particle wiggles down channel, approaching two sides of the wall
periodically and oscillating around channel centerline; while the
anomalous rolling mode means falling particle rotates as if it was
contacting and rolling up along one of channel walls. The spiral
mode is unique in 3D ellipsoid particle settling, and it indicates
particle spirals around channel centerline while the angle between
the particle axis and channel centerline keeps constant. The above-
mentioned modes are usually resulted from two effects: one is
channel geometry effects, which is characterized by blockage ratio
as channel width over particle axis length; the other is particle
inertial effect, which is characterized by particle Reynolds number
as a function of particle size and particle density. Specifically, Xia
et al. [2] reported the horizontal mode and the horizontal II mode
for a 2D elliptical particle sedimentation in a wide channel as par-
ticle density varies. In addition, they identified the oscillatory
mode, the anomalous rolling mode (known as the tumbling mode
in their paper), the vertical mode, the inclined mode and the hor-
izontal model as blockage ratio varies when particle sediments in
a narrow channel. By carrying out 3D simulation, Swaminathan
et al. [3] found oscillatory and inclined modes for an ellipsoidal
particle settling in a tube. To further verify whether the tumbling
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mode, the vertical mode and the horizontal mode found in 2D sim-
ulations will occur in 3D simulation, Huang et al. [4] investigated
the sedimentation of a prolate ellipsoid in both circular and square
tubes, and they confirmed the spiral mode and the vertically
inclined mode. Moreover, the phase diagram of flow regimes as
functions of tube blockage ratio and Reynolds number are
obtained. Later, same authors extended their investigation to study
the sedimentation of an oblate ellipsoid [5].

The above studies focused on isothermal suspended particles
where there is no thermal convection between suspended particles
and surrounding fluids. However, thermal effects are not always
negligible in studying particle suspension since heat transfer might
significantly alter the particle kinematics. For example, Gan et al.
[6] demonstrated that thermal convection can change sedimenta-
tion behavior of a 2D circular particle via two factors: one is the
competition between natural and forced convection, and the other
is wall effects. Feng and Michaelides [7] investigated heat transfer
in particulate flows with a group of interacting circular particles
and they showed how the local temperature field and buoyancy
force affects both sedimentation process and energy transfer. Deen
Fig. 2. Time histories of the elliptical parti

Fig. 1. Schematic drawing of curve wall boundary condition.
et al. [8] investigated heat transfer of dense particulate systems in
both stationary beds and fluidized beds. Hu and Guo [9] identified
five competing mechanisms for lateral migration of a circular par-
ticle with thermal convection, namely the wall repulsion due to
lubrication, the inertial lift related to shear slip, the lift due to par-
ticle rotation, the lift due to the curvature of the undisturbed veloc-
ity profile and the lift induced by thermal convection. However, it
should be noted that in all previous studies involving particulate
flows with heat transfer, only solid particles as the circular shape
were considered to reduce the complexity of the problem.

With the knowledge presented in the above studies, one may
ask what complex phenomena would arise for an elliptical particle
sedimentation in non-isothermal fluids? To answer this question,
in this work, we present a systemic investigation of thermal effects
on elliptical particle sedimentation behavior. The rest of the paper
is organized as follows: In Section 2, we first present the double-
distribution multiple-relaxation-time lattice Boltzmann (LB)
model for simulating fluid flows and heat transfer, followed by
particle-resolved LB model for simulating particle suspension. In
Section 3, the present LB model is evaluated by verifying sedimen-
tation behavior of an elliptical particle in isothermal fluids, and a
cold circular particle in a hot fluid. After that, numerical simula-
tions are carried out to study a cold elliptical particle settling in
a hot fluid and a hot elliptical particle settling in a cold fluid with
various Archimedes and Grashof numbers.

2. Numerical method

2.1. The double-distribution-function LB model for fluid flow and heat
transfer

Incompressible fluid flows can be described by the Navier-
Stokes equations; while buoyancy effect caused by temperature
variation can be approximated by the Boussinesq approximation
[10–13]. Then, the governing equations of fluid flow and heat
transfer can be written as

r � u ¼ 0 ð1aÞ
@u
@t

þ u � ru ¼ � 1
q0

rpþ mr2uþ gbT T � T0ð Þŷ ð1bÞ
@T
@t

þ u � rT ¼ jr2T ð1cÞ
cle settling in a wide channel (b ¼ 4).
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where u is the fluid velocity, q is the fluid density, p is the pressure,
and m is the kinematic viscosity. T is the temperature, bT is the ther-
mal expansion coefficient, and j is the thermal diffusivity. g is the
gravity value, and ŷ is unit vector in the vertical direction. q0 and
T0 are reference density and temperature, respectively. With the

scaling x=L0 ! x�; t= L20
j

� �
! t�;u= j

L0

� �
! u�;p= q0j2

L20

� �
! p�; T � T0ð Þ

=DT ! T�, then Eqs. (1a)–(1c) can be rewritten in dimensionless
form as

r � u� ¼ 0 ð2aÞ
@u�

@t�
þ u� � ru� ¼ �rp� þ Prr2u� þ GrPr2T�~y ð2bÞ

@T�

@t�
þ u� � rT� ¼ r2T� ð2cÞ

where the Prandtl number is Pr ¼ m=j, and the Grashof number is
Gr ¼ gbTDTL

3
0=m2.

To solve the above equations, the double-distribution-function
LB model can be adopted, namely, two LB equations are solved to
simulate flow field and temperature field, respectively [14–16].
Fig. 3. Time histories of the elliptical particle

Fig. 4. Time histories of the elliptical particle
The evolution equations of density distribution function f i and
temperature distribution function gi can be written as

f iðxþeidt;tþdtÞ� f iðx;tÞ¼�ðM�1SÞij mjðx;tÞ�mðeqÞ
j ðx;tÞ

h i
þdtFi0 ð3aÞ

giðxþeidt;tþdtÞ�giðx;tÞ¼�ðN�1Q Þij njðx;tÞ�nðeqÞ
j ðx;tÞ

h i
ð3bÞ

where t is the time, dt is the time step, x is fluid parcel position, and
ei is discrete velocity along the ith direction. F0 ¼ M�1 I� S

2

� �
M~F is

the forcing term in velocity space, where M~F is given by [17,18].

M~F¼ 0; 6u �F; �6u �F; Fx; �Fx; Fy; �Fy; 2ðuxFx�uyFyÞ; ðuxFyþuyFxÞ
� �T

ð4Þ
Here, the external body force is F ¼ gbTðT � T0Þŷ. The equilibrium
moments mðeqÞ is given by

mðeqÞ ¼ q; �2qþ 3
q
ðj2x þ j2yÞ; q� 3

q
ðj2x þ j2yÞ; jx;

�

�jx; jy; �jy;
1
q
ðj2x � j2yÞ;

1
q
jxjy

	T
ð5Þ
settling in a narrow channel (b ¼ 1:69).

settling in a narrow channel (b ¼ 1:23).



Fig. 5. (a) Isothermals of circular particle sedimentation; (b) time history of the horizontal position of the particle.

Fig. 6. Schematic drawing of (a) a cold elliptical particle settling in a hot fluid; (b) a
hot elliptical particle settling in a cold fluid.

Fig. 7. Phase diagram of a cold elliptical particle settling in a hot fluid within a wide
channel.
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and the relaxation matrix S is given by S ¼ diagðsq;
se; s�; sj; sq; sj; sq; sm; smÞ, where the relaxation parameters are
sq ¼ sj ¼ 0; se ¼ s� ¼ sm ¼ 1=sf ; sq ¼ 8ð2sf � 1Þ=ð8sf � 1Þ. sf is deter-
mined by the kinematic viscosity of the fluids as sf ¼ 3mþ 0:5.
The transformation matrix M is given by Lallemand and Luo [19].
The density q and velocity u are calculated as

q ¼ P8
i¼0f i; u ¼ 1

q

P8
i¼0eif i þ 1

2 F
� �

. The equilibrium moments nðeqÞ

is given by

nðeqÞ ¼ T; uT; vT; aTT; 0½ �T ð6Þ
where aT is a constant determined by the thermal diffusivity of the
fluids as aT ¼ 20

ffiffiffi
3

p
j� 4. The relaxation matrix Q is given by

Q ¼ diagð0; qT ; qT ; qe; qmÞ, where the relaxation parameters are
qT ¼ 3�
ffiffiffi
3

p
and qe ¼ qm ¼ 4

ffiffiffi
3

p
� 6. The transformation matrix N

is given by Wang et al. [20]. The temperature T is calculated as

T ¼ P4
i¼0gi.
2.2. Translation and rotation of the solid particle

The solid particle is considered as rigid body and the kinematics
of the particle include translational and rotational motion [21–24].
The translational motion of the solid particle is determined by
Newton’s second law as

Mp
dUcðtÞ
dt

¼ FpðtÞ ð7Þ

whereMp is the mass of the particle, Uc is the velocity of the particle
center and Fp is the total force exerted on the solid particle. The



Fig. 9. Time histories of the elliptical particle settling (Ar = 82.83, Gr = 600).

Fig. 8. Time histories of the elliptical particle settling (Ar = 17.15, Gr = 600).

Fig. 10. The particle Reynolds number as a function of Grashof number (for a cold elliptical particle settling in a hot fluid).

A. Xu et al. / International Journal of Heat and Mass Transfer 126 (2018) 753–764 757



Fig. 11. Time histories of the elliptical particle settling (Ar = 3.13, Gr = 200).

758 A. Xu et al. / International Journal of Heat and Mass Transfer 126 (2018) 753–764
rotational motion of the solid particle is determined by Euler’s sec-
ond law as

Ip � dXðtÞ
dt

þXðtÞ � Ip �XðtÞ� � ¼ TpðtÞ ð8Þ

where Ip is inertial tensor of the particle, X is angular velocity and
Tp is torque exerted on the solid particle.

2.3. Fluid-solid boundary interaction

At the particle’s surface, the interpolated bounce-back scheme
for curved wall boundaries is adopted to guarantee no-slip bound-
ary condition [25–30]. Define the parameter q ¼ jxf � xwj=jxf � xsj
to describe the fraction of fluid region in a grid spacing intersected
by solid surface, where xf is fluid node near the boundary, xs is
solid node near the boundary and xw is the wall of fluid-solid inter-
face. Based on the relative location of xw between xf and xs (as
shown in Fig. 1), the interpolation scheme of density distribution
function is given as [26]: for q 6 0:5

f�iðxf ; tÞ ¼ qð2qþ 1Þf iðxf þ eidt ; tÞ þ ð1� 4q2Þf iðxf ; tÞ
� qð1� 2qÞf iðxf � eidt ; tÞ þ 2xiq0

e�i � uw

c2s
ð9Þ

for q P 0:5

f�iðxf ; tÞ ¼ 1
qð2qþ 1Þ f iðxf þ eidt; tÞ þ 2q� 1

q
f�iðxf � eidt; tÞ

� 2q� 1
2qþ 1

f�iðxf � 2eidt; tÞ þ 1
qð2qþ 1Þ2xiq0

e�i � uw

c2s
ð10Þ

where f�i is the distribution function associated with the velocity
e�i ¼ �ei.

We assume the fluids and particle temperatures equal to a con-
stant Tw at the surface of the particle. Then the bounce-back
scheme for the temperature distribution function gi at curved wall
boundaries is given as [31,32]:

g�iðxf ; t þ dtÞ ¼ cd1gþ
i ðxf ; tÞ þ cd2gþ

i ðxf þ eidt ; tÞ þ cd3gþ
�i
ðxf ; tÞ

h i
þ cd4ð2xiTwÞ ð11Þ

where g�i is the distribution function associated with the velocity
e�i ¼ �ei, and gþ

i is the post-collision distribution function. The
coefficients cd;1�4 are given as
cd1 ¼ �1; cd2 ¼ 2q� 1
2qþ 1

; cd3 ¼ 2q� 1
2qþ 1

; cd4 ¼ 2
2qþ 1

ð12Þ

To calculate the force and torque exerted by the fluid on the
solid particle, the momentum-exchange method is adopted,
namely, hydrodynamic force acting on the solid surface is obtained
by summing up the local momentum exchange of the fluid parcels
during the bounce back process at fluid-solid interface over bound-
ary links [33]. To restore the Galilean invariance, the modified
momentum-exchange method proposed by Wen et al. [34] is
adopted. Then, the total force is calculated as

F ¼
X
xf

X
ibl

fþi ðxf ; tÞðei � uwÞ � f�iðxf ; t þ dtÞðe�i � uwÞ
� � ð13Þ

and the total torque is calculated as

T ¼
X
xf

X
ibl

ðxw � xcÞ � fþi ðxf ; tÞðei � uwÞ � f�iðxf ; t þ dtÞðe�i � uwÞ
� �

ð14Þ
To prevent overlap between the particle and the wall when

their distance is small, artificial repulsive force model should be
adopted. Here, we choose the spring force model proposed by Feng
and Michaelides [35], which is written as

Frepulsive ¼
0 if jxsj > n;

C
ew

jxs j�s
s

� �2
xs
jxs j if jxsj 6 n:

8<
: ð15Þ

Here, ew represents the stiffness parameter and n represents the
threshold distance. C is the force scale, xs denotes the vector with
smallest norm value that points from the wall to the particle.

3. Validation

3.1. Validation I: Sedimentation of an elliptical particle in isothermal
fluids

We consider an elliptical particle settling in an infinite long
channel filled with isothermal fluids. The particle is released along
the vertical centerline of the channel with an initial angle h0
between the particle major axis and the horizontal direction. In
the simulations, the lengths of major axis A and minor axis B of
the elliptical particle are A ¼ 0:1 cm and B ¼ 0:05 cm, respectively.
The density and dynamic viscosity of the liquid are qf ¼ 1 g=cm3

and l ¼ 0:01 g=ðcm � sÞ, respectively. The density of the solid



Fig. 12. Temperature and vorticity contours of the cold elliptical particle settling in a wide channel (Ar = 3.13, Gr = 200).
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particle is qs ¼ 1:1 g=cm3. Zero velocity is applied at the inlet; the
normal derivative of velocity is zero at the outlet. To mimicking an
infinite long channel while saving the computational cost and min-
imizing the end effects, the moving computational domain tech-
nique [36] is adopted so that the vertical position of the particle
is kept at approximately half of the computational domain.

Fig. 2 shows the particle trajectories and particle orientations
during the sedimentation in a wide channel with blockage ratio
b ¼ L=A ¼ 4, where L is the channel width. Grid independence
and time-step independence studies are performed to determine
that mesh size of 120 � 960 and time step with sf ¼ 0:5375 is
small enough to get accurate results. Data reported by Xia et al.
[2] is also provided as comparison. To further investigate effects
of channel walls on the sedimentation behavior of the particle,
the blockage ratio is decreased to b ¼ 1:69 and b ¼ 1:23. Results
are shown in Figs. 3 and 4, respectively. We can see that the pre-
sent results agree well with Xia et al.’s results [2], and the reported
inclined mode (as shown in Fig. 3) and tumbling mode (as shown
in Fig. 4) are reproduced.

3.2. Validation II: Sedimentation of a cold circular particle in a hot fluid

We consider a cold circular particle settling in an infinitely long
channel filled with a hot fluid. The vertical walls of the channel are
maintained at a constant high temperature, while the surface of
the particle is maintained at a low temperature. In the simulations,
the particle is released off the vertical channel centerline by half
of the particle diameter (D). The density ratio between the solid



Fig. 14. Contours of (a) temperature and (b) vorticity of the elliptical particle
settling (Ar = 3.13, Gr = 600).

Fig. 13. Time histories of the elliptical particle settling (Ar = 3.13, Gr = 600).
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particle and the fluid is qr ¼ qs=qf ¼ 1:00232. The width of the
channel is four times the diameter of the circular particle. The
Prandtl number is fixed as Pr = 0.7. Grid independence and time-
step independence studies are performed to determine that mesh
size of 160 � 1280 and time step with sf ¼ 0:5015 is small enough
to get accurate results.

Fig. 5 demonstrates that when the viscous force is dominated
(e.g., at Gr = 100), the particle will eventually sediment along the
vertical centerline of the channel, and the temperature field around
the particle exhibits symmetry pattern; when the buoyancy force
is dominated (e.g., at Gr = 2000), the particle will eventually sedi-
ment off the vertical channel centerline, and the offset distance
is influenced by the Gr number. The equilibrium positions of the
settling particle, which can be determined from Fig. 5b, also agree
with that reported by Feng and Michaelides [7], Yu et al. [37], Kang
and Hassan [38].
4. Results and discussion

We now investigate the sedimentation behavior of a cold ellip-
tical particle settling in an infinitely long channel filled with a hot
fluid and a hot elliptical particle settling in an infinitely long chan-
nel filled with a cold fluid, as the schematic drawing shown in
Fig. 6. The length of the elliptical particle’s major axis is A, and
the density of the particle is qs; the width of the channel is L.
The density, viscosity, thermal expansion coefficient and thermal
diffusivity of the fluids is qf ; m; bT and j, respectively. The gravity
acceleration is denoted by g. The temperature difference between
the bulk fluids and particle’s surface is denoted by DT . The non-
dimensional parameters in this problem include the blockage ratio

b ¼ L=A, the density ratio Dq=qf ¼ qs � qf

� �
=qf , the Prandtl num-

ber Pr ¼ m=j, the Archimedes number Ar ¼
ffiffiffiffiffiffiffiffiffiffiffi
Dq
qf

gA3

m2

r
and the Grashof

number Gr ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffi
gbTDTA

3

m2

q
. In this study, we set the Prandtl number as

Pr ¼ 7; we fix gA3

m2 , namely the density ratio and the Archimedes
number are not independent; we choose the blockage ratio b ¼ 4,
namely particle sediments in a wide channel. Thus, remaining
non-dimensional parameters under investigation will be (Ar, Gr).
We assume the solid particles have high thermal conductivity such
that the temperature of the particle is regarded as constant. Grid
independence and time-step independence studies are performed
to determine that mesh size of 160 � 1280 and time step with
sf ¼ 0:503 is small enough to get accurate results. In the following,
we will discuss the sedimentation behaviors of both cold elliptical
particle and hot elliptical particle.
4.1. A cold elliptical particle settling in an infinitely long channel filled
with a hot fluid

We first consider the sedimentation behavior of a cold elliptical
particle in an infinitely long channel filled with hot fluids. The sed-
imentation mode distribution on the (Ar, Gr)-plane is shown in
Fig. 7. We can observe four distinct sedimentation modes: the hor-
izontal mode, the horizontal II mode, the inclined mode and the



Fig. 15. Time histories of the elliptical particle settling in a wide channel (Ar = 3.13).

Fig. 16. Phase diagram of a hot elliptical particle settling in a cold fluid within a
wide channel (the green cross represents that the hot particle is lifted up in the cold
fluid due to buoyancy force). (For interpretation of the references to colour in this
figure legend, the reader is referred to the web version of this article.)
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tumbling mode. Compared to the sedimentation modes reported
by Xia et al. [2] for an isothermal elliptical particle sediment within
a wide channel, two new sedimentation modes are found arising
from thermal effects. In the following, we will discuss these modes
in detail.

From the phase diagram, it is observed that when 10 < Ar < 50,
the settling particle exhibits the horizontal mode; when 50 < Ar
< 100, the settling particle exhibits the horizontal II mode. These
findings are consistent with that of isothermal particle sedimenta-
tions [2]. Typical trajectories and orientations of the horizontal
mode and horizontal II mode are shown in Figs. 8 and 9, respec-
tively. In the horizontal mode, the particle sediments horizontally
along the centerline of the channel, namely the position of the par-
ticle center keeps at around x=L ¼ 0:5, and the angle between par-
ticle major axis and horizontal direction keeps around h ¼ 0. In the
horizontal II mode, the particle sediments with oscillating pattern
for both the horizontal position (around x=L ¼ 0:5 as shown in
Fig. 9a) and incline angle (around h ¼ 0 as shown in Fig. 9b). We
further analyze the correlation of particle Reynolds number
(Rep ¼ uA=m, where u represents the terminal particle settling
velocity) as a function of the Grashof number when particle sedi-
ments in the horizontal mode and horizontal II mode. As shown
in Fig. 10a, at the same Grashof number, the particle Reynolds
number increases with the increases of Archimedes number; at
the same Archimedes number, the particle Reynolds number
increases slightly with the increases of Grashof number. This can
be understood as the influence of both forced convection and nat-
ural convection on the particle motion, and it is further demon-
strated in Fig. 10b that when the particle sediments in horizontal
and horizontal II modes Gr=Re2p � 1. For the cold particle settling
in hot fluids, the downward temperature-induced buoyancy force
is in the same direction with the gravity force, then the increases
of Grashof number, namely the increases of natural convection,
will augment the particle sedimentation.

When 1 < Ar < 10, two new sedimentation modes are found
arising from thermal effects: the tumbling mode and the inclined
mode. Typical trajectories and orientations of the tumbling mode
are shown in Fig. 11. The particle trajectory oscillates slightly off-
sets the channel centerline (near the right wall), and the angle
between particle major axis and horizontal direction changes peri-
odically from 0 to 2p with counterclockwise rotation. The temper-
ature contours and vorticity contours of the settling particle during
a rotation period is further visualized in Fig. 12a–e and f–j,
respectively.

Fig. 13 shows typical trajectories and orientations of the particle
when it sediments in the inclined mode. We can see the particle
sediments with a constant velocity and a constant inclination to
horizontal. It should be noted that the inclined mode reported here
is the result of competition of natural convection and force convec-
tion; while the inclined mode observed by Xia et al. [2] is the result
of channel wall confinement as the blockage ratio is small (b < 2).
We can see from Fig. 13a that the particle center sediments along
the channel centerline demonstrating the inclined mode reported
here is not influenced by the wall effects; we can also see from
Fig. 10b that natural convection is more prominent for the settling
particle. Fig. 14 further visualized the temperature contours and
vorticity when the particle sediments in the inclined mode.

We now discuss the evolvement of particle settling modes from
the tumbling mode to inclined mode at the same Archimedes num-



Fig. 17. The particle Reynolds number as a function of Grashof number (for a hot elliptical particle settling in a cold fluid).

Fig. 18. Time histories of the elliptical particle settling in a wide channel (Ar = 26.19, Gr = 400).
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ber. In the tumbling mode, with the increase of Grashof number,
the rotation period of the particle is increased and the offset of
the particle from the channel centerline is decreased (as shown
in Fig. 15). Further increasing of Grashof number leads to the tum-
bling particle enters the inclined mode, where the angle between
particle major axis and horizontal direction keeps constant and
the particle’s rotation period can be regarded as infinite. In the
inclined mode, with the increase of Grashof number, the angle
between particle major axis and horizontal direction decreases.
These modes transition can be understood as the influence of
increased natural convection on the particle sedimentation. For a
cold particle settling in a hot fluid, the cold fluid layer next to
the particle moving downward counters the upward external flow,
and this will cause vortex shedding and oscillation of the wake.
Larger Grashof number will argument natural convection which
resulted in competitive natural and forced convection, and further
leads to symmetric vortex and steady-state settling.
4.2. A hot elliptical particle settling in an infinitely long channel filled
with a cold fluid

We then consider the sedimentation behavior of a hot elliptical
particle in an infinitely long channel filled with a cold fluid. The
sedimentation mode distribution on the (Ar, Gr)-plane is shown
in Fig. 16. We can observe four distinct sedimentation modes:
the horizontal mode, the horizontal II mode, the inclined mode
and the anomalous rolling mode. In addition, we found that the
elliptical hot particle will not sediments in cold fluids when Ar <
17, as denoted by the green cross in Fig. 16. In cold fluids, the
hot particle transfer heat to the surrounding fluids and causes nat-
ural convection in the direction opposite to the particle sediments
direction; when the particle Archimedes number is small (i.e., the
particle density is small), the upward buoyancy force may
overcome downward gravity force on the particle thus hindering
the particle sedimentation. As indicated in Fig. 17b, the forced



Fig. 19. Temperature and vorticity contours of the hot elliptical particle settling in a wide channel (Ar = 26.19, Gr = 400).
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convection may even be neglected in the regimes when Gr=Re2p 	 1
(corresponding to low Ar and high Gr regime in Fig. 17a).

Compared to the sedimentation modes reported by Xia et al. [2]
for an isothermal elliptical particle sediment within a wide chan-
nel, two new sedimentation modes are found due to thermal
effects, namely the inclined mode and the anomalous rolling mode.
Because we have discussed the horizontal mode, the horizontal II
mode and the inclined mode for a cold elliptical particle sedimen-
tation, in the following, we will only analyze the anomalous rolling
mode. Fig. 18 shows typical trajectories and orientations of the
particle when sediments in the anomalous rolling mode. The par-
ticle trajectory oscillates offsets the channel centerline (near the
left wall), and the angle between particle major axis and horizontal
direction changes periodically from 0 to 2p. The falling particle
rotates counterclockwise as if it was contacting and rolling up
along the left channel wall, for this reason, the sedimentation
mode is termed as ”anomalous” rolling mode. The temperature
contours and vorticity contours of the settling particle during a
rolling period is visualized in Fig. 19a–e and f–j, respectively. It is
also worth mentioning the anomalous rolling mode reported here
is the result of combined wall effects and competition between
natural and forced convection; while the inclined mode observed
by Xia et al. [2] is merely the result of channel wall confinement.
Here, the anomalous mode is bounded between the horizontal
mode and inclined mode. For colder particle, the forced convection
will be dominated and the particle sediments in the horizonal
mode; for hotter particle, the natural convection will be dominated
and the particle sediments in the inclined mode.
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5. Conclusion

The sedimentation behavior of an elliptical thermal particle in
the channel has been studied numerically. The phase diagram of
the flow regimes as functions of Archimedes and Grashof numbers
are obtained. From the phase diagram, it is observed that three
new sedimentation modes appeared in the region with small
Archimedes number where natural convection dominates. For the
cold particle settling in a hot fluid, the tumbling mode and the
inclined mode are identified; for the hot particle settling in a cold
fluid, the anomalous rolling mode and the inclined mode are iden-
tified. These sedimentation modes are the results of channel wall
confinement, combined forced and natural convection.
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