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Lattice Boltzmann Simulation of
Mass Transfer Coefficients for
Chemically Reactive Flows in
Porous Media
We present lattice Boltzmann (LB) simulations for the mass transfer coefficient from bulk
flows to pore surfaces in chemically reactive flows for both ordered and disordered
porous structures. The ordered porous structure under consideration consists of cylinders
in a staggered arrangement and in a line arrangement, while the disordered one is com-
posed of randomly placed cylinders. Results show that the ordered porous structure of
staggered cylinders exhibits a larger mass transfer coefficient than ordered porous struc-
ture of inline cylinders does. It is also found that in the disordered porous structures, the
Sherwood number (Sh) increases linearly with Reynolds number (Re) at the creeping flow
regime; the Sh and Re exhibit a one-half power law dependence at the inertial flow
regime. Meanwhile, for Schmidt number (Sc) between 1 and 10, the Sh is proportional to
Sc0.8; for Sc between 10 and 100, the Sh is proportional to Sc0.3.
[DOI: 10.1115/1.4038555]

1 Introduction

Transport phenomena in porous media are of considerable
interest because of their wide application in engineering and natu-
ral processes. For example, the coupled electrolyte flows, heat and
mass transfer, ions transport, and electrons transport in the porous
electrode play a critical role in fuel cells and flow batteries [1,2].
Transport properties of the porous media, such as permeability,
effective thermal conductivity, heat transfer coefficient, effective
mass diffusivity, and mass transfer coefficient, are of practical
interest to quantify the complex transport behaviors in porous
media, further enabling the design and manufacture of porous
structure that can meet specified requirements. Moreover, accurate
transport properties are essential ingredients to formulate macro-
scopic mathematical models to gain insight into the physical–
chemical process in porous media efficiently.

The approaches to obtain transport properties can be generally
classified into three categories. The first category is theoretical
analysis, including volume averaging method and multiscale
asymptotics method [3,4]. The underlying idea of these methods
is to define macroscale variables through homogenization. How-
ever, the applications of these methods are usually limited to
ordered porous structure with periodical boundary condition, and
the extension to complex disordered porous structure is rather dif-
ficult. The second category is experimental measurement, which
can be used to obtain the transport properties accurately for

specified samples [5,6]. However, as the pore geometry is rather
complex involving many interacting geometric parameters, the
information provided by experiments is usually insufficient to
derive a general interpretation of the pore geometry effects upon
transport properties. The third category is numerical simulation,
which is not restricted by the geometrical structure of porous
media, and can also provide detailed information on the transport
process [7,8]. With the rapid increasing of computing capabilities,
the numerical simulation is expected to play a more important
role in the research of transport phenomena.

Previous efforts to obtain transport properties via numerical
simulations have focused on calculating permeability [9,10],
effective thermal conductivity [11,12], heat transfer coefficient
[13–16], and effective mass diffusivity [17,18]. To our best
knowledge, predicting the mass transfer coefficient, which can be
used to quantify mass transfer from the bulk flow to pore surfaces
[5], has rarely been reported. Generally, the mass transfer coeffi-
cient km can be defined as km ¼ N=ðcbulk � cwallÞ, where N is the
mass flux at the reactive wall surfaces, cbulk and cwall are the con-
centrations in the bulk solution and at the reactive wall surfaces,
respectively. The dimensionless Sherwood number (Sh) is usually
adopted to represent the mass transfer coefficient, and it is related
to the geometry of porous media, fluid properties, and local veloc-
ity of the fluids. It is worth mentioning that a heat transfer correla-
tion can be used in analogy to a mass transfer correlation by
replacing the Nusselt number (Nu) with Sherwood number and
replacing the Prandtl number (Pr) with Schmidt number (Sc);
moreover, heat transfer correlations are easier to be determined
from experimental work. Thus, heat transfer correlation received
more attention in previous literatures. For example, Grucelski and
Pozorski [19] considered heat transfer in a random arrangement of
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circular cylinders and proposed the empirical correlation Nu /
Re0:6Pr1=3 based on their direct numerical simulation data. On the
other hand, Gamrat et al. [20] show that the constant wall temper-
ature boundary condition and the constant volumetric heat source
boundary condition have different effects on the heat transfer
processes; then it is instinct to conjecture that the chemically reac-
tive boundary condition will also influence the mass transfer pro-
cess differently.

In this work, we present lattice Boltzmann (LB) simulations to
predict mass transfer coefficient in chemically reactive flows.
Among available numerical simulation techniques, the LB method
has proved to be a promising tool for simulating fluid systems
involving complex boundaries, primarily because the solid–fluid
interface can be easily implemented by modifications on the dis-
tribution function encountering the interface [8]. The physical–
chemical processes under investigation involve fluid flows, mass
transfer, and heterogeneous chemical reaction.

2 Numerical Method

2.1 Mathematical Model for Fluid Flows, Mass Transfer
and Heterogeneous Chemical Reaction. Fluid flows and associ-
ate transport processes in porous media can be described at
different length scales, namely the representative elementary
volume-scale and the pore-scale [8]. In this work, we consider the
dominant processes at the pore-scale so that individual pore space
is directly resolved. The governing equation for fluid flows in the
pore space is the incompressible Navier–Stokes equations, which
can be written as

r � u ¼ 0 (1a)

@u

@t
þ u � ru ¼ � 1

q
rpþ �r2u (1b)

where u and p are the local fluid velocity and pressure, respec-
tively. In pore-scale approach, the effect of porous media is
reflected through the incorporating of solid porous matrix with
complex geometry in the computational domain. This treatment is
opposite to that in representative elementary volume-scale
approach, where the effect of porous media is reflected through
the homogenization of governing equation [21,22].

The concentration for a dilute chemical species can be assumed
as a passive scalar; then mass transfer in the pore space is
described by the convection–diffusion equation, which is written
as

@C

@t
þr � Cuð Þ ¼ r � DrCð Þ (2)

where C is the local solute concentration.
Heterogeneous reactions at solid–fluid interface are represented

by

�D
@Cw

@n
¼ kr Ceq � Cwð Þa (3)

Here, n denotes the unit normal vector at the solid wall pointing
to the fluid region, as shown in Fig. 1. kr is the reaction-rate con-
stant, Ceq is equilibrium concentration, and a is the order of reac-
tion kinetics. In the present work, we only consider first-order
chemical reaction, namely a¼ 1. Choosing the dimensionless
scale for concentration as C� ¼ C=Ceq, and introducing Dam-
k€ohler number (Da) to represent the ratio of reaction rate to mass
transfer rate Da ¼ kr=ðD=LÞ, where L is characteristics length,
then Eq. (3) can be rewritten as

@C�w
@n
¼ Da

L
C�w � 1
� �

(4)

2.2 Lattice Boltzmann Model for Fluid Flows and Mass
Transfer. In LB method, the most popular collision model is lat-
tice Bhatnagar–Gross–Krook (LBGK) model [23] with single-
relaxation-time approximation for the complex collision operator.
However, it has been reported by Pan et al. [9] that LBGK model
would result in viscosity dependence of boundary locations; thus,
the prediction of permeability in porous media depends on relaxa-
tion parameters. Similar conclusion was recently obtained by Chai
et al. [18] when investigating diffusion process to predict the
effective mass diffusivity. To eliminate the inherent numerical
error in LBGK model, the most effective solution is to adopt
multiple-relaxation-time collision model [24] so that various
relaxation times can be adjusted independently [9,18,25]. Thus,
here we adopt the multiple-relaxation-time collision model to
obtain both flow field and concentration field.

The evolution equation of density distribution function can be
written as

fiðxþ eidt; tþ dtÞ � fiðx; tÞ ¼ �ðM�1SÞij½mjðx; tÞ �m
ðeqÞ
j ðx; tÞ�

(5)

where fi is the density distribution function, x is the fluid parcel
position, ei is the discrete velocity along the ith direction, dt is the
time-step, and M is a 9� 9 orthogonal transformation matrix. For
the two-dimensional D2Q9 lattice model, ei and M can be found

in Refs. [24] and [26]. The equilibrium moments mðeqÞ is given by

mðeqÞ ¼ ½q;�2qþ 3ðj2x þ j2yÞ; q� 3ðj2
x þ j2

yÞ; jx;�jx; jy;�jy; j2
x �

j2
y ; jxjy�T, where jx ¼ qux and jy ¼ quy are x and y components of

momentum, respectively. The relaxation matrix is given as
S ¼ diagðsq; se; s�; sj; sq; sj; sq; s�; s�Þ, where the relaxation param-
eters are given as sq ¼ sj ¼ 0; se ¼ s� ¼ s� ¼ 1=sf , and
sq ¼ 8ð2sf � 1Þ=ð8sf � 1Þ. The density q and velocity u are cal-

culated as q ¼
P8

i¼0 fi; u ¼ 1
q

P8
i¼0 eifi.

The evolution equation of concentration distribution function
can be written as

giðxþ eidt; tþ dtÞ � giðx; tÞ ¼ �ðN�1QÞij½njðx; tÞ � n
ðeqÞ
j ðx; tÞ�

(6)

where gi is the concentration distribution function. N is a 5� 5
orthogonal transformation matrix. For the two-dimensional D2Q5
lattice model, ei and N can be found in Refs. [25] and [26]. The

equilibrium moments nðeqÞ is given as nðeqÞ ¼ ½C; uC; vC; aC; 0�T,
where a is a constant determined by the mass diffusivity as

a ¼ 60D=
ffiffiffi
3
p
� 4. The relaxation matrix is given by Q ¼ diag

ð0; qD; qD; qe; q�Þ, where the relaxation parameters are given as

qD ¼ 3�
ffiffiffi
3
p

and qe ¼ q� ¼ 4
ffiffiffi
3
p
� 6. The concentration C is cal-

culated as C ¼
P4

i¼0 gi.

2.3 Boundary Condition

2.3.1 At Solid-Fluid Interface. Heterogeneous chemical reac-
tion at solid–fluid interfaces described by Eq. (4) is essentially

Fig. 1 Demonstration of the boundary location for heterogene-
ous reaction
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Robin boundary condition for the concentration field, which can
be written in general form as

b1Cw þ b2

@Cw

@n
¼ b3 (7)

where b1 ¼ Da=L; b2 ¼ �1, and b3 ¼ Da=L. To obtain the
required concentration value from the available concentration gra-
dient at the boundary, a finite difference approximation is
employed as

@Cw

@n
� 8Cw � 9Cf þ Cff

3dxn � ei
(8)

where the subscripts f and ff denote the nearest fluid point and the
next-nearest fluid point from the wall, respectively. n is unit vec-
tor illustrated in Fig. 1, and ei is discrete velocity crosses the inter-
face. For fluid points near flat interfaces, n � ei ¼ �1; for fluid
points near the corners, n � ei ¼ �

ffiffiffi
2
p

. Similar treatment using
first-order finite difference approximation was adopted by Zhang
et al. [27]. Substituting Eq. (8) into Eq. (7), the concentration
value at boundary can be obtained as

Cw ¼
9b2Cf � b2Cff þ 3b3dxn � ei

8b2 þ 3b1dxn � ei
(9)

Then, the antibounce-back boundary scheme for concentration
distribution function can be adopted as [25]

g�i xf ; tþ dt

� �
¼ �g�i xf ; tð Þ þ

4þ a

10
Cw (10)

where g�i is the distribution function associated with the velocity
e�i ¼ �ei.

2.3.2 At Inlet and Outlet. For simulations in a unit cell, the
periodic fully developed flow and mass transfer boundary condi-
tion should be adopted in the streamwise direction [28]. The cor-
responding LB boundary scheme for the flow field was proposed
by Zhang and Kwok [29], which modifies the outgoing density
distribution function at inlet and outlet. Meanwhile, the LB
boundary scheme for the concentration field employing D2Q5 lat-
tice model is given by Yoshino and Inamuro [30].

For simulations in a disordered porous medium, one may spec-
ify prescribed pressure and concentration profiles at the inlet and
outlet following Guo et al. [31] and Wang et al. [25], respectively.

2.4 Calculation of Effective Permeability and Mass Trans-
fer Coefficient. The permeability K describes the ability of fluids
flow through porous media under pressure difference rp. When
the Reynolds number (Re ¼ uL=�) is sufficiently small, the
Darcy’s law states that the relationship between average velocity
and pressure difference is linear. However, when the Reynolds
number is finite, the Forchheimer equation indicates that the linear
relationship breaks down. In this study, the Reynolds number cov-
ers both the creeping flow regime and the inertial flow regime;
thus, an effective permeability Ke is calculated as Ke ¼ �lhui=
rp, where hui denotes the average velocity. At the creeping flow
regime, Ke ¼ K and it only depends on the geometry of the porous
media; at the inertial flow regime, the inertial of the fluids also
contributes to Ke.

The mass transfer coefficient km quantifies the mass transfer
process from bulk flow to pore surfaces as

kmd hCif � hCiw
� �

¼ 1

DV

ð
Aint

n � DrCdA (11)

where d ¼ Aint=DV is the surface area per unit volume, and Aint is
the interfacial mass transfer area. h�if and h�iw denote the average
in the fluid region and the pore surfaces, respectively. After

obtaining the concentration field information via pore-scale simu-
lations, the mass transfer coefficient is calculated as

km ¼

P
i2int

ni � DrCi

Aint hCif � hCiw
� � (12)

Define the Sherwood number to represent the ratio of total rate
of mass transfer to the rate of diffusive mass transport as
Sh ¼ km=ðD=LÞ, where L is characteristic length. In addition,
define Reynolds number and Schmidt number (Sc ¼ �=D); then
Sherwood number can be expressed as a function of Reynolds
number and Schmidt number as Sh ¼ ShðRe;ScÞ.

Fig. 2 Schematic drawing of a bank of square rods: (a) peri-
odic structure; (b) a single unit cell

Fig. 3 Isotherms of forced convection in a bank of square rods
(e 5 0:51): (a) Re 5 20, Pr 5 1, (b) Re 5 112, Pr 5 1, (c) Re 5 20,
Pr 5 7, and (d) Re 5 112, Pr 5 7

Journal of Heat Transfer MAY 2018, Vol. 140 / 052601-3



3 Validation

A heat transfer correlation can be used in analogy to a mass
transfer correlation; moreover, heat transfer correlations are read-
ily available from literature and easier to be determined from
experimental work. Thus, in the following, we assess the validity
of the numerical method for simulating convective heat transfer
and calculating heat transfer coefficient under constant wall tem-
perature condition. Figure 2(a) shows the porous structure of a
bank of square rods, and a unit cell representing the geometry is
shown in Fig. 2(b).

Kuwahara et al. [13] proposed (later corrected by Nakayama
[32]) the interfacial heat transfer coefficient as

Nu ¼ 2þ 12 1� eð Þ
e

� �
þ 1� eð Þ1=2 uDL

�

� �0:6

Pr1=3 (13)

where e is porosity and uD ¼ ehui is Darcian velocity. Similarly,
Pallares and Grau proposed [15] the correlation as

Nu ¼ 2þ 8 1� eð Þ
e

� �
þ 1� eð Þ1=2 uDL

�

� �0:6

Pr1=3 (14)

In the simulations, the periodic fully developed flow and mass
transfer boundary condition (described in Sec. 2.3.2) is applied in

the x direction; and the simple periodical boundary condition (i.e.,
the distribution functions leaving one end are the same as that
entering the other end) is applied in the y direction. The Reynolds
number (ReD ¼ uDL=�) is adjusted via changing the prescribed
pressure difference between the inlet and the outlet. Figures 3(a)
and 3(b) show the isotherms for different Reynolds numbers at
Pr ¼ 1, which is generally in consistent with the results reported
by Kuwahara et al. [13]. In addition, the isothermals at Pr ¼ 7 are
shown in Figs. 3(c) and 3(d), which resulted in stronger convec-
tion compared with Pr ¼ 1.

The Nusselt number as a function of Reynolds number and
porosity is shown in Fig. 4. Our LB simulation results using three
different mesh sizes Nx � Ny ¼ 200� 100, 400� 200, and
800� 400 are compared with correlations presented in Eqs. (13)
and (14). We can see all the results are in good agreement when
the porosity is large (e ¼ 0:91). However, as the porosity decreas-
ing, there is disparity between the correlations proposed in Eqs.
(13) and (14). Our results is consistent with the correlation pro-
posed by Pallares and Grau (i.e., Eq. (14)) when the porosity is
small (e ¼ 0:51). The simulation results also demonstrate grid
convergence of the numerical method.

4 Simulation Results and Discussion

4.1 Ordered Porous Medium. We first consider the coupled
fluid flow, mass transfer, and heterogeneous chemical reaction in
an ordered porous medium. The unit cell of the porous structure is
shown in Fig. 5, where the square cylinders are either inline or
staggered. In the simulations, the length of the square cylinder L
can be varied to adjust the porosity e of the unit cell. Since we
have tested mesh independence for the unit cells in Sec. 3, the
mesh size is chosen as 200� 200 to save the computational cost
without sacrificing numerical accuracy.

From the correlation between Reynolds number and effective
permeability shown in Fig. 6, we can distinguish between the
creeping flow regime and the inertial flow regime: the effective
permeability is independent of Reynolds number at the creeping
flow regime and varies with Reynolds number at the inertial flow
regime. Moreover, we can see that at the same porosity, the effec-
tive permeability for square inline unit cells is larger than that for
square staggered unit cells. In Fig. 7, the dimensionless mass
transfer coefficients (i.e., the Sherwood numbers) are given under
the same condition as that for calculating the effective permeabil-
ity. One of the interesting finding is that at the creeping flow
regime, the arrangement of solid obstacles in the periodic porous
structure has little effect on the dimensionless mass transfer coef-
ficient. In addition, at the inertial flow regime, the dimensionless
mass transfer coefficients for square inline unit cells are smaller

Fig. 4 Comparison of interfacial heat transfer correlations

Fig. 5 Unit cells of ordered porous medium: (a) square inline and (b) square staggered

052601-4 / Vol. 140, MAY 2018 Transactions of the ASME



Fig. 6 Comparison of the dimensionless effective permeability (Ke /L2) for two types of unit
cells: (a) e 5 0.97, (b) e 5 0.94, (c), e 5 0.88, and (d) e 5 0.83

Fig. 7 Comparison of the dimensionless mass transfer coefficient (Sh) for two types of unit
cells: (a) e 5 0.97, (b) e 5 0.94, (c), e 5 0.88, and (d) e 5 0.83

Journal of Heat Transfer MAY 2018, Vol. 140 / 052601-5



than those for square staggered unit cells at the same porosity.
These results indicate that there is trade-off for choosing which
types of unit cell to construct an ordered porous medium, as in
practical engineering applications, particularly in fuel cells and
flow batteries, one would usually pursue porous electrodes with
pore geometry that can simultaneously result in large permeability
and large mass transfer coefficient.

4.2 Disordered Porous Medium. We now consider a disor-
dered porous medium consisting of randomly placed square cylin-
ders. The computational domain is 1800� 900 lattice, and the
length of square cylinder is 40 lattice. The center of the square is
randomly set in the computational domain, exclusively the left
and the right ends of the domain to minimize the boundary effect
at inlet and outlet. Any two squares are not allowed to overlap and
the minimum gap between two squares is set to be 20 lattice spac-
ing. Six sample geometries of the porous structure generated using

different initial seed values are shown in Figs. 8(a)–8(f), and are
referred to porous structure A, B, C, D, E, F for simplicity. The
prescribed pressure and concentration are set at the inlet and out-
let; the periodical boundary conditions for flow field and concen-
tration field are set in the direction perpendicular to the
streamwise direction. To make the simulations more efficient, a
parallel code based on open multi-processing (OpenMP) is com-
piled. Utilizing OpenMP acceleration, about 19� 106 lattice
updates per second can be achieved when scaled up to 24 central
processing unit threads. Figure 9 gives the corresponding pore
size distribution of these six disordered porous structures. The
pore size distribution is calculated based on the directional aver-
age method [33,34]. At each void point, we start counting the pore
length along specified directions until reaching a solid point.
Then, the pore diameter is obtained by averaging the pore length
in all given directions. In the present study, the eight directions
same as that for the discrete velocity set fe1; e2;…; e8g were cho-
sen. By randomly placing the square cylinders to reconstruct the
porous structure, the pore size exhibits a unimodal distribution,
with mean pore diameter value near three to four times the length
of square cylinders. This trend is generally in agreement with pore
size distribution of carbon paper, which is a widely used material
for the electrode of fuel cell [1] and flow battery [2].

Figure 10 shows the streamlines (left-hand side) and concentra-
tion field (right-hand side) in the porous structure A under various
Reynolds numbers at Sc¼ 1. At very small Reynolds number
(e.g., Re¼ 0.025 shown in Fig. 10(a)), the motion of the fluid is at
the creeping flow regime, and the momentum transport is domi-
nated by the viscous force; the mass transport is dominated by dif-
fusion, and the concentration contour is almost flat with some
irregularities at a few pores. As Reynolds number increases (e.g.,
Re¼ 6.75 shown in Fig. 10(b)), the inertial force begins to con-
tribute to the transport of both momentum and mass. Some vor-
texes behind the cylinders appear, and the concentration contour
exhibits tree-like fingers. At larger Reynolds number (e.g.,
Re¼ 45.53 shown in Fig. 10(c)), the inertial effect becomes more
pronounced. The streamlines are more irregular around the cylin-
ders, and more vortexes appear behind the cylinders; the concen-
tration fingers spread more through the porous medium, thus
enhancing the mass transfer process.

Fig. 8 Geometries of the disordered porous structure: (a)
porous structure A, (b) porous structure B, (c) porous structure
C, (d) porous structure D, (e) porous structure E, and (f) porous
structure F

Fig. 9 Pore size distribution of the disordered porous
structure

Fig. 10 Streamlines (left-hand side) and concentration field
(right-hand side) in porous structure A from creeping flow
regime to inertial flow regime: (a) Re 5 0.025, (b) Re 5 6.75, and
(c) Re 5 45.53
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Figure 11(a) shows the correlations between Sherwood number
and Reynolds number, and Fig. 12(a) shows the correlations
between Sherwood number and Schmidt number in the disordered
porous media. The Reynolds number is in the range from creeping
flow regime to inertial flow regime; the Schmidt number is in the
range 1 � Sc � 100. Here, we propose the correlation between
Sherwood number and Reynolds as well as Schmidt number in the
form Sh ¼ aþ bRecScd , where a corresponds to the mass transfer
coefficient at the diffusion limit. To determine the power index c
and d, define Sh0 ¼ Sh� a. From Fig. 11(b) we can see that at the
creeping flow regime, Sherwood number increases linearly with
Reynolds number, namely the power index c¼ 1; at the inertial
flow regime, Sherwood number and Reynolds number exhibit a
one-half power law dependence, namely the power index c¼ 0.5.
From Fig. 12(b) we can see that for 1 � Sc < 10, the power index
d¼ 0.8; for 10 < Sc � 100, the power index d¼ 0.3.

5 Conclusion

In this work, we have presented lattice Boltzmann simulations
for the mass transfer coefficient in chemically reactive flows for
both ordered and disordered porous structure. The present method
allows the analysis of geometrical structure effect, Reynolds num-
ber, and Schmidt number effect on the mass transfer coefficient.
The main findings are summarized as follows:

(1) The ordered porous structure consists of cylinders in a stag-
gered arrangement exhibits a larger mass transfer

coefficient than cylinders in a line arrangement do, while
the opposite relation holds for effective permeability. This
indicates the trade-off for choosing the geometrical struc-
ture of an ordered porous medium to simultaneously maxi-
mize flow and mass transfer.

(2) The disordered porous structures consists of randomly placed
cylinders, the correlation between Sherwood number and
Reynolds number can be divided into two parts: at the creep-
ing flow regime, the Sherwood number increases linearly
with Reynolds number, namely Sh / Re; at the inertial flow
regime, the Sherwood number and Reynolds number exhibit
a one-half power law dependence, namely Sh / Re0:5.
Meanwhile, for Schmidt number 1 � Sc < 10; Sh / Sc0:8;
for Schmidt number 10 < Sc � 100; Sh / Sc0:3.

Funding Data

	 Research Grants Council, University Grants Committee
(Grant No. 623313).

Nomenclature

c, C ¼ concentration (mol/m3)
D ¼ mass diffusivity (m2/s)

Da ¼ Damk€ohler number
f, g ¼ distribution function
km ¼ mass transfer coefficient

Fig. 11 Correlations between Sherwood number and Reynolds
number: (a) Sh 5 a 1 b RecScd and (b) Sh05 Sh2a

Fig. 12 Correlations between Sherwood number and Schmidt
number: (a) Sh 5 a 1 b RecScd and (b) Sh05 Sh2a

Journal of Heat Transfer MAY 2018, Vol. 140 / 052601-7



Ke ¼ effective permeability
L ¼ characteristic length (m)

Nu ¼ Nusselt number
p ¼ pressure (Pa)

Pr ¼ Prandtl number
Re ¼ Reynolds number
Sc ¼ Schmidt number
Sh ¼ Sherwood number

t ¼ time (s)
u ¼ velocity vector (m/s)

x, y ¼ coordinates (m)
e ¼ porosity
l ¼ dynamic viscosity (Pa�s)
� ¼ kinematic viscosity (m2/s)
q ¼ density (Kg/m3)

Subscripts or Superscripts

eq ¼ equilibrium
int ¼ interface
w ¼ wall
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