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Abstract Fuel cells and flow batteries are promising tech-
nologies to address climate change and air pollution prob-
lems. An understanding of the complex multiscale and
multiphysics transport phenomena occurring in these elec-
trochemical systems requires powerful numerical tools. Over
the past decades, the lattice Boltzmann (LB) method has
attracted broad interest in the computational fluid dynamics
and the numerical heat transfer communities, primarily due
to its kinetic nature making it appropriate for modeling com-
plex multiphase transport phenomena. More importantly, the
LBmethodfitswellwith parallel computing due to its locality
feature,which is required for large-scale engineering applica-
tions. In this article, we review the LBmethod for gas–liquid
two-phase flows, coupled fluid flow and mass transport in
porous media, and particulate flows. Examples of applica-
tions are provided in fuel cells and flow batteries. Further
developments of the LB method are also outlined.
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1 Introduction

Electrochemical systems such as fuel cells and flow bat-
teries typically involve fluid flows, heat/mass transport and
electrochemical reactions that occur at macro-scale, meso-
scale, and nano-scale. The performance and reliability of
these technologies depend heavily on our understanding of
these complex multiscale transport phenomena, which high-
light the demand for accurate predictive approaches.With the
emergence of supercomputers in the 1960s, various numer-
ical methods, such as the finite volume (FV) method, finite
element (FE) method, lattice Boltzmann (LB) method, dissi-
pative particle dynamic (DPD) method, molecular dynamics
(MD) method, and density functional theory (DFT) method,
have aided both fundamental research and applied research
in mechanical engineering, aerospace engineering, chemical
engineering, biological engineering, and energy engineering.
Among these numerical methods, the LB method stands out
as a powerful tool for simulating fluid flows and associate
transport phenomena. The LB method is based on a descrip-
tion of particle density distribution that originated from
Boltzmann kinetic theory, and practically predicts hydro-
dynamic behavior on a continuum scale, which allows for
incorporating the mesoscopic physical pictures whilst the
physical laws at macroscale can be recovered with low com-
putational cost.

Since the emergence of the LB method, its ability to
simulate complex flows has attracted broad interest in the
computational fluid dynamics and numerical heat transfer
communities [1–10]. In this review, we present the advances
of the LB model for gas–liquid two-phase flows, coupled
fluid flow and mass transport in porous media, and partic-
ulate flows with a focus on fuel cells and flow batteries.
The remainder of this paper is organized as follows: Sect. 2
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describes the transport phenomena in fuel cells and flow bat-
teries; Sect. 3 introduces the basic LB formulation; Sects. 4–6
review the LBmodel for gas–liquid two-phase flows, for cou-
pled fluid flow and mass transport in porous media, and for
particulate flows, respectively; Sect. 7 reviews the applica-
tions of the LB model in simulating transport phenomena in
fuel cells and flow batteries. Finally, the summary and out-
look are given in Sect. 8.

2 General description of transport phenomena in
fuel cells and flow batteries

2.1 Gas–liquid two-phase flows in fuel cells

Proton exchange membrane fuel cells (PEMFCs) are energy
conversion devices that convert chemical energy to electri-
cal energy. Figure 1 illustrates a typical PEMFC system,
which consists of a proton exchange membrane sandwiched
by anode and cathode compartments [11,12]. Both the anode
and the cathode include a flow channel, a gas diffusion
layer, and a catalyst layer. The membrane conducts protons
and insulates electrons between the anode and the cath-
ode; the flow channels supply uniformly feeds of gas fuels;
the diffusion layers provide support to the corresponding
catalyst layer and conduct electrons to the current collec-
tor; the catalyst layers provide triple-phase boundaries for
the electrochemical reactions and facilitate the simultaneous
transport of protons, electrons, reactants, and products. The
electrochemical reaction on the anode is

H2 → 2H+ + 2e−, (1)
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Catalyst layer
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collector
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Fig. 1 Schematic illustration of a proton exchange membrane fuel cell
system

and the electrochemical reaction on the cathode is

2H+ + 2e− + 1/2O2 → H2O. (2)

Thus, the overall reaction in the PEMFC is

H2 + 1/2O2 → H2O. (3)

On the anode, humidified hydrogen is supplied to the
catalyst layer where it can be further oxidized to generate
electrons and protons, while on the cathode, humidified air
is supplied to the catalyst layer, where oxygen reacts with
the protons and electrons to form water. At high current den-
sity operation, the excessive liquid water produced on the
cathode may block the porous pathway in the catalyst layer
and the gas diffusion layer, thus hindering the transport of
oxygen to the reaction sites. Even worse, the unavoidable
liquid water may cover the electrochemically active site in
the catalyst layer, thus further decreasing the fuel cell’s per-
formance. These phenomena are known as “water flooding”.
Water flooding also causes transport issues in the flow chan-
nel such as channel blockage, which increases the pressure
drop. Similar water flooding issues exist in direct methanol
fuel cells (DMFCs) as well [13]. In short, on both the anode
and the cathode, the transport phenomena involve gas–liquid
two-phase flows in the porousmedia and in the flowchannels.

2.2 Coupled fluid flow and mass transport in aqueous
redox flow batteries

Flow batteries are energy storage devices that store the
intermittent power generated from solar and wind. Fig-
ure 2 illustrates a typical aqueous redox flow battery system,
which is a sandwiched structure consisting of positive and
negative porous carbon electrodes separated by an ion-
exchange membrane [14]. The electrolytes containing the
dissolved active species are stored in external tanks and cir-
culated through the porous electrodes,where electrochemical
reactions occur to store or release electricity. As the energy-
storage tanks are separated from the power pack, the stored
energy can be scaled independently of power to meet the
capacity requirements. The electrochemical reaction at the
positive electrode can be expressed as

Cn − ye− charge−−−→
discharge
←−−− Cn+y, (4)

while the electrochemical reaction at the negative electrode
can be expressed as

An−x + xe− charge−−−→
discharge
←−−− An . (5)
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Fig. 2 Schematic illustration of an aqueous redox flow battery system

Depending on the selection of active species for electro-
chemical reactions at the positive and negative electrodes,
various types of aqueous redox flow batteries are avail-
able, such as all-vanadium redox flow batteries (VRFBs),
iron-chromium redox flow batteries (ICRFBs), polysul-
phide/bromine flow batteries and so on [15]. In these flow
batteries, the electrolyte is pumped from the external tank
to the porous electrode. Then, reactants in the electrolyte
are dispersed from the electrode inlet and adsorbed onto
the surface of electrode pores to participate in electrochem-
ical reactions. Afterwards, the products are desorbed from
the reactive surfaces and dispersed in the electrolyte fur-
ther cycling back to the tank. Meanwhile, the ionic current
density resulting from the transport of ions in the liquid
electrolyte is in balance with the electronic current den-
sity resulting from the transport of electrons through the
solid matrix of the porous electrodes. In short, the trans-
port processes in both the positive and negative porous
electrodes involve coupled liquid electrolyteflow,mass trans-
port, ion transport, electron transport, and electrochemical
reactions.

2.3 Particulate flows in suspension redox flow batteries

The suspension redox flow battery is another type of flow
battery, which differs from aqueous redox flow batteries in
that in suspension flow batteries the active material is sus-
pended, rather than dissolved in a solution [16]. Figure 3
illustrates a typical suspension redox flow battery system,
which shows a similar architecture to aqueous redoxflowbat-
teries introduced in Sect. 2.2. In suspension electrodes, there
are insoluble charge storing active materials and conductive
additives, together with solution electrolytes containing liq-

uid ions. The electrons transport through the formation of
percolation networks of agglomerated particles. Because the
concentration of active species is much increased in suspen-
sion redoxflowbatteries comparedwith that in aqueous redox
flow batteries, the energy density limitation of aqueous redox
flow batteries can be overcome.

The size, shape, and composition of both active material
particles and conductive material particles are intrinsically
coupled, and affect the rheology and the transport properties
of the suspension fluid. Typically, the active material con-
tent is between 5–25wt%. Although further increasing the
loading of active material particles will gain higher energy
density, the increase in the viscosity of the suspension results
in a substantial penalty. Meanwhile, the conductive additives
also increase the overall suspension viscosity, even though
it is needed to facilitate efficient electron and charge perco-
lation. Thus, there are inherent trade-offs to creating highly
conductive percolation pathways and rheological properties.
In short, the transport processes in the suspension electrodes
involve the particulate flows of active material particles and
conductive material particles, and both are inherently cou-
pled with electrochemical reactions.

Based on the above review, first-principle-based model-
ing techniques capable of handling multiphase and coupled
momentum, heat and mass transport are highly desirable to
help address the challenges at hand.

3 Basic LB formulations

3.1 The collision operator and the forcing scheme

The LB method traces its root to cellular automata (CA)
which were conceived by John von Neumann in the 1940s.
In CA, individual cells exist in a state 0 or 1 on a discretized
space. At each time step, these cells update their states fol-
lowing a rule that is affected by their neighbors’ states. A
systematical study on cellular automata was conducted by
Wolfram [17] in 1983. In 1986, Frisch et al. [18] took amajor
step forward by applying CA to fluid systems, and proposed
lattice gas cellular automata (LGCA) for the Navier–Stokes
equations. The use of a triangular grid restored some of the
symmetry required to properly simulate the fluids. How-
ever, the LGCA suffers from high statistical noise and lacks
Galilean invariance. The nextmajor stepwas taken byMcNa-
mara and Zanetti [19] in 1988. To eliminate the statistical
noise of the LGCA, they replaced the Boolean variable in
LGCAwith a real-valued distribution function. Then amajor
simplification was introduced by Qian et al. [20] in 1992,
who adopted a single-relaxation-time collision model, lead-
ing to the lattice Bhatnagar–Gross–Krook model, which is
one of the most popular LB models used today. As men-
tioned above, the LB method originated from CA. On the
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Fig. 3 Schematic illustration of a suspension redox flow battery system

other hand, in 1997, He and Luo [21] proved that the lat-
tice Boltzmann equation can be derived from the continuous
Boltzmann equation. The starting point is the Boltzmann
equation with the Bhatnagar–Gross–Krook (BGK) approxi-
mation [22–24],

∂ f (x, ξ , t)

∂t
+ ξ · ∇ f (x, ξ , t) = −1

τ

[
f (x, ξ , t)

− f (eq) (x, ξ , t)
]
, (6)

where f (eq) (x, ξ , t) is the Maxwellian distribution function.
Expanding f (eq) (x, ξ , t) into a Taylor series in terms of the
fluid velocity for low Mach number flows (i.e., |u|/√RT �
1), then

f (eq) (x, ξ , t) = ρ

(2πRT )D/2 exp

(
− ξ2

2RT

)

×
[
1 + ξ · u

RT
+ (ξ · u)2

2RT
− |u|2

2RT

]
. (7)

Discretizing the velocity space ξ into a discrete velocity set
{ei } under the constraint
∫

ξ k f (eq) (x, ξ , t) dξ =
∑
i

ωieki f
(eq) (x, ei , t),

0 � k � 3, (8)

allows the Navier–Stokes equations to be obtained in the low
Mach number limit. Hereωi and ei are theweights and points

of the numerical quadrature. Define a discrete distribution
function fi (x, t), which satisfies

∂ fi (x, t)
∂t

+ ei · ∇ fi (x, t) = −1

τ

[
fi (x, t) − f (eq)

i (x, t)
]
,

(9)

where f (eq)
i (x, t) = ωi f (eq) (x, ei , t). Integrating the above

equation from t to t + δt along the characteristic line and
assuming the collision term is constant during this interval,
the evolution equation of the LB model can be obtained as

fi (x + eiδt , t + δt ) − fi (x, t) = ΩLBGK
i , (10)

where ΩLBGK
i = − 1

τ
[ fi (x, t) − f

(eq)

i (x, t)]. Here, the
ΩLBGK

i is known as the lattice Bhatnagar–Gross–Krook
(LBGK) collision operator [20]. Meanwhile, since this colli-
sion operator relies on only a single relaxation parameter, it
is also known as the single-relaxation-time (SRT) collision
operator. The fluid density and velocity can then be obtained
from the moments of discrete distribution function as

ρ (x, t) =
∑
i

fi (x, t) , ρ (x, t) u (x, t) =
∑
i

ei fi (x, t) .

(11)

One drawback of the LBGK collision operator is that it
suffers from server numerical instability at high Reynolds
numbers. An alternative collision operator is the multiple-
relaxation-time (MRT) collision operator [25,26]. The MRT
collision operator is defined as
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ΩMRT
i = −(M−1SM)i j [ f j (x, t) − f (eq)

j (x, t)]. (12)

In the MRT model, the density distribution function fi and
its equilibrium f (eq)

i can be projected onto the moment space
with the aid of a transformationmatrixM. Then, the evolution
equation of the LB model is rewritten as

m∗ = m − S(m − m(eq)). (13)

Here, S is a relaxation matrix. The macroscopic density ρ

and velocity u in the MRT model can be obtained similarly
to their counterparts in the LBGK model. Simulation results
of both single and multiphase flows have demonstrated the
superior numerical stability of the MRT collision operator
over the LBGK collision operator.

In practice, fluid flows are usually exposed to external
or internal forces, such as gravity or intermolecular interac-
tions, thus it is essential to include the body force in the LB
equation to describe such flows. In the continuousBoltzmann
equation, it is quite straightforward to add the body force F,
as

∂ f (x, ξ , t)

∂t
+ξ ·∇ f (x, ξ , t)+F (x, t) ·∇ξ f (x, ξ , t) = Ωi .

(14)

In the lattice Boltzmann equation, however, the forcing
term cannot be employed straightforwardly because parti-
cle velocity is discretized. To account for the forcing term in
the LB equation, a forcing term F ′

i in velocity space is usu-
ally added into the time evolution of the density distribution
function

fi (x + eiδt , t + δt ) − fi (x, t) = Ωi + δt F
′
i . (15)

Obviously, F ′
i should depend on the body force F.

A variety of discrete forcing schemes have been devel-
oped; onemay refer to Guo and Shu [3], andHuang et al. [27]
for a comprehensive comparison. Here, only Guo’s forcing
scheme [28,29] is reviewed because it has shown superior
numerical stability and accuracy in simulating incompress-
ible single-phase flows [27]. Guo et al. [28] proposed a
moment expansion scheme, which is written as

F ′
i = ωi

(
1 − 1

2τ

) [
ei · F
c2s

+ (uF + Fu) : (eiei − c2s I
)

2c4s

]
.

(16)

Extending the above scheme to the MRT LB equation [29],
the evolution equation with a forcing term is written as

fi (x + eiδt , t + δt ) − fi (x, t)

= −(M−1SM)i j [ f j (x, t) − f
(eq)

j (x, t)] + δtM−1F̂,

(17)

where F̂ represents the moments of the forcing term in the
moment space, which can be expressed as

F̂ =
(
I − 1

2
S
)
MF. (18)

Here, F is related to the body forces F as

Fi = ωi

[
ei · F
c2s

+ (uF + Fu) : (eiei − c2s I
)

2c4s

]
. (19)

Then, the macroscopic fluid density and velocity are calcu-
lated as

ρ (x, t) =
∑
i

fi (x, t) ,

ρ (x, t)u (x, t) =
∑
i

ei fi (x, t) + δt

2
F (x, t) .

(20)

3.2 Parallel implementation of the LB method

To pursue simulations with faster speeds so that larger phys-
ical domains or higher computational resolutions can be
achieved, parallel computing techniques are essential in the
application of numerical methods for practical engineer-
ing problems. Thanks to the localized nature of the LB
method, it shows superior capability to fit parallel computing
frameworks, including Open Multi-Processing (OpenMP),
Message Passing Interface (MPI), Open Accelerator (Ope-
nACC), and Compute Unified Device Architecture (CUDA).
When choosing one of the programming standards men-
tioned above, there is trade-off among the computing facility,
the programming effort, and computational efficiency. With
regard to the computing facility, OpenMP supports shared
memory systems consisting of a single large memory, while
MPI supports distributedmemory systems consisting ofmul-
tiple computers with independent memory; OpenACC and
CUDA harnesses the power of graphics processing unit
(GPU) accelerators, whileCUDAworks onlywithNVIDIA’s
graphics card. As for the programming effort, both OpenMP
and OpenACC are directive programming standards which
are easily implemented; MPI and CUDA require substan-
tial changes in the serial code, thus threatening the code
correctness, portability, andmaintainability. In terms of com-
putational efficiency, usually MPI shows better scalability
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than OpenMP, while the sophisticated management of mem-
ory in CUDA brings benefits compared with OpenACC.
Simulations using the LB method, as with other numerical
methods, have been utilizing OpenMP and MPI acceleration
since the 1990s. Nowadays, GPU attracts a lot of atten-
tion as an emerging computational accelerator due to its
combined tremendous computing power and superior mem-
ory bandwidth. Many previous efforts have been devoted to
CUDA accelerated LB simulation [30–35], and they show
good parallel efficiency. Motivated by the requirement that
the hardware should have less restriction on practical engi-
neering applications, recently Xu et al. [36] assessed the
performance of OpenACC accelerated LB simulations, and
the results demonstrate that OpenACC allows a speed-up
of around 50–60 times for multiphysics LB simulation with
double-precision floating point arithmetic.

4 LB model for gas–liquid two-phase flows

Existing LB models for gas–liquid two-phase flows can be
classified into four categories: the color-gradient model pro-
posed by Gunstensen et al. [37] and Grunau et al. [38], the
pseudo-potential model proposed by Shan and Chen [39,40],
the free-energy model proposed by Swift et al. [41,42], and
the phase-field model proposed by He et al. [43].

The color-gradient LB model was proposed by Gun-
stensen el al. [37] in 1991 and Grunau et al. [38] in 1993,
which is based on the work of immiscible two-phase flows
for lattice gas cellular automatons (LGCA) by Rothman
and Keller [44] in 1988. In this model, phase separation is
achieved via a re-coloring step. Twodistribution functions for
red-colored fluid and blue-colored fluid were used to denote
the two different fluids. In addition to the standard collision
step in LBmethod, an additional collision operator for gener-
ating the surface tension was adopted. The advantage of the
color-gradientmodel is that the viscosity ratio and the surface
tension can be varied independently. However, the original
color-gradient model is limited to the case of identical densi-
ties for immiscible two-phase flows. Huang et al. [45] found
that the reason behind this is that unwanted extra terms exist
in the recovered Navier–Stokes equations derived from the
color-gradient model. To eliminate the unwanted terms, they
introduced a source term in the LB equation and a liquid-gas
density ratio of order O(10) was achieved. Later, Huang et
al. [46] proposed an MRT color-gradient model which can
significantly reduce the spurious currents, and their model
shows better numerical stability. Recently, Ba et al. [47] also
proposed an MRT color-gradient model with an additional
source term to recover theNaiver–Stokes equations, and two-
phase flowswith density ratios of order O(100) andReynolds
numbers of order O(100) were simulated.

The pseudo-potential LB model was proposed by Shan
and Chen [39,40] in 1993 and 1994. In this model, the fluid
interactions among different phases are described by an arti-
ficial inter-particle potential. The inter-particle potential is
incorporated into the LB equation via a forcing scheme so
that phase separation can be achieved. The advantage of the
pseudo-potential model is that interfaces can arise, deform,
andmigrate naturally, thus improving the computational effi-
ciency. However, one should be cautious when applying the
original pseudo-potential model due to the following two
issues: first, the model is applicable only to low liquid-gas
density ratio problems; secondly, the surface tension cannot
be varied independently of the density ratio in this model.
The efforts to address these issues include incorporating
realistic EOS into the model [48], increasing the isotropy
order of the interaction force [49,50], modifying the inter-
action force [51,52], and improving the forcing scheme to
incorporate the interaction force into the model [27,53–57].
Recently, Reijers et al. [58] also extended the pseudo-
potential model to simulate axisymmetric multiphase flows,
which offers significantly lower computational costs than its
full counterpart.

The free-energy LB model was proposed by Swift et
al. [41,42] in 1995 and 1996. In this model, phase sepa-
ration is achieved by incorporating a non-ideal equation of
state into the pressure tensor. Specifically, the thermodynam-
ics is considered via modifying the second-order moment of
the equilibrium density distribution function. The advantage
of the free-energy model is that the surface tension can be
varied easily. However, the original free-energy model is not
Galilean invariant. Inamuro et al. [59] proposed a Galilean-
invariant free-energy LBmodel, but a Poisson equation must
be solved, which spoils the locality of the LB method.

The phase-field LB model was proposed by He et al. [43]
in 1999. In this model, phase separation is achieved by track-
ing an order parameter, which has constant value in the bulk
phase andvaries smoothly across the diffuse-interface region.
Two distribution functions and two corresponding LB equa-
tions are used to recover the Navier–Stokes equations and
the interface tracking equation, respectively. Usually, the
Cahn–Hilliard equation [60,61] based on phase-field theory
is adopted to capture the phase interface dynamics, while
recent advances using the Allen–Cahn equation [62] also
show promising applications [63]. It should be noted that in
the literature, the free-energy LB model and phase-field LB
model are not strictly distinguished. This is because the ther-
modynamic behavior of a fluid can be expressed by the free
energy, which is functional of the order parameter. Here, we
classify those models that describing the interface dynamics
by an order parameter as phase-field LB models; examples
include Inamuro et al. [64], Lee et al. [65], Huang et al. [66],
and Shao et al. [67]. The advantage of the phase-field model
is that it has solid physical foundations due to its link with
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phase-field theory to capture the interface dynamics. Further-
more, it is convenient in simulating axisymmetricmultiphase
flows [68,69]. However, to correctly recover themacroscopic
equations is a nontrivial thing: Li et al. [70] found that the
recovered momentum equation includes an additional force
term; Liang et al. [71] found that the Cahn–Hilliard equation
cannot be completely recovered. In addition, the implemen-
tation of wetting boundary conditions in phase-field method
is tricky, since for both the order parameter and the chemical
potential, suitable boundary conditions are required [72–74].
In addition, it is worth mentioning that recently Liang et
al. [75] made attempts to simulate three-phase incompress-
ible flows based on multicomponent phase-field theory.

As shown above, much progress has been made on these
gas–liquid two-phase LB models. Still, the strengths of
different models vary for simulating multiphase flows at
large density ratios and the capability of maintaining non-
diffuse interface thickness for long-time evolution [76].
The Rayleigh–Taylor instability (RTI) problem is a classi-
cal benchmark to demonstrate the density ratio effect on
multiphase flows. In the RTI problem, a heavier fluid is
accelerated against a lighter one with slight perturbation at
the interface. The Atwodd number (At), which is defined
as At = (ρheavier − ρlighter)/(ρheavier + ρlighter), is a main
dimensionless parameter to characterize the flow behavior.
In addition, the ability of the LB model to simulate mul-
ticomponent flows and thermal flows, and the flexibility
for implementing wetting boundary conditions in complex
geometries, also varies [8,9,77]. In the following, we will
discuss in detail the formulation and development of only the
pseudo-potential LBmodel, because in terms of personal per-
spective, we think the practical engineering application of the
pseudo-potential LBmodel in simulating thermalmultiphase
flows [78–80], multicomponent multiphase flows [81], and
multiphase flows in porous media [82–84] is more promis-
ing. It is also worth mentioning that there have been some
comprehensive reviews of gas–liquid two-phase LB models,
such as by Huang et al. [8], Li et al. [9], and Chen et al. [85].

To simulate single-component multiphase flows, the inter-
action force derived from inter-particle potential tomimic the
molecular interactions is adopted as [49,86]

Fint(x) = −Gψ(x)
N∑
i=1

w(|ei |2)ψ(x + ei )ei , (21)

where ψ(x) represents the interaction potential, G repre-
sents the interaction strength, and w(|ei |2) are the weights.
Yuan and Schaefer [48] suggested incorporating an equation
of state (EOS) for non-ideal gases, such as the Carnahan–
Starling EOS and the Peng–Robinson EOS, in the interaction
potentialψ(x); similarly, Li and Luo [87] reported the use of
an artificial piecewise linear EOS. In the pseudo-potential

model, the forcing scheme to incorporate the interaction
force will markedly affect the numerical accuracy and stabil-
ity of the model. In Sect. 3.2, we have introduced Guo’s
forcing scheme to incorporate the body force in simulat-
ing incompressible single-phase flows,which shows superior
numerical accuracy and stability. However, incorporating the
force term in the pseudo-potential LB model is much more
complex [27,53,57,88]. Here, we review the forcing scheme
proposed by Li et al. [54,55] based on the D2Q9 lattice
model, which is capable of achieving large density ratios
as well as variable surface tension. The evolution equation
of the LB model is

m∗ = m − S(m − m(eq)) + δt

(
I − S

2

)
MF̃ + C. (22)

For the D2Q9 lattice model, the terms MF̃ and C are given
by,

MF̃ =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0

6u · F + 12σ |F|2
ψ2δt (s

−1
e −0.5)

−6u · F − 12σ |F|2
ψ2δt (s

−1
ζ −0.5)

Fx
−Fx
Fy

−Fy

2ux Fx − 2uy Fy

ux Fy + 2uy Fx

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

,

C =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0
3
2 se(Qxx + Qyy)

− 3
2 sζ (Qxx + Qyy)

0
0
0
0

−sυ(Qxx − Qyy)

−sυQxy

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

, (23)

respectively. Here, σ is introduced to tune the mechanical
stability condition; the variables Qxx , Qyy , and Qxy are
obtained from

Q = κ
G

2
ψ(x)

N∑
i=1

w(|ei |2)[ψ(x + ei ) − ψ(x)]eiei , (24)

where the parameter κ is introduced to vary the surface
tension. The adhesive force between fluid and solid must
be considered when the fluids interact with a solid wall.
Two types of fluid-solid interaction force have been widely
adopted: the density-based interaction force [89,90] and the
pseudo-potential-based interaction force [91]. Li et al. [92]
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Fig. 4 Coexistence curves obtained from Maxwell construction and LB simulation [56]. Reproduced from Ref. [56] (Copyright 2015, Elsevier).
a Coexistence curve of the C–S EOS and b coexistence curve of the P–R EOS

proposed a pseudo-potential-based fluid-solid interaction
force that can vary contact angle, even when the liquid-gas
density ratio is large. The adhesive force is written as

Fads(x) = −Gadsψ(x)
N∑
i=1

w(|ei |2)ψ(x)s(x + ei)ei , (25)

where Gads represents the fluid-solid interaction strength to
adjust the contact angle. s(x) is the indicator function, i.e.,
s(x) = 1 when x is in solid, and s(x) = 0 when x is in fluid.
With the addition of body force Fbody, then the total force F
in Eq. (23) is

F = Fint + Fads + Fbody. (26)

Through Chapman–Enskog analysis [56,93], the macro-
scopic equations obtained from LB equation with the above
forcing scheme is

∂ρ

∂t
+ ∇ · (ρu) = 0, (27a)

∂(ρu)

∂t
+ ∇ · (ρuu)

= −∇ · (ρc2s I)+∇ · �+F − 2G2c4σ∇ ·
(
|∇ψ |2I

)

−∇ ·
[
κ
Gc4

6

(
ψ∇2ψI − ψ∇∇ψ

)]
, (27b)

where � is shear stress and is defined as

� = ρν
[
∇u + (∇u)T

]
+ ρ(ξ − 2

3
ν)(∇ · u)I. (28)

When σ = 0 and κ = 0, the standard pressure tensor can
be recovered from Eq. (27). The mechanical stability con-

dition is given as ε = −2(α + 24Gσ)/β, where α and
β are given by α = 0 and β = 3, respectively [86]. To
make the mechanical stability condition approximate the
thermodynamic consistency requirement, the parameter ε

is suggested to be chosen as 1 < ε < 2 [53], while its
exact value can be further determined through fitting the
Maxwell construction solution [54,56]. Following the above
approach to devise two-dimensional models, Xu et al. [56]
have devised a three-dimensional pseudo-potential-basedLB
modelwith large density ratios aswell as variable surface ten-
sion. Figure 4 shows the coexistence curves demonstrating
that the proposed forcing scheme is capable of achiev-
ing thermodynamic consistency and large density ratios;
Fig. 5 shows the pressure differences between the inside
and outside of a droplet versus the reciprocal of the droplet
radius at different values of κ , demonstrating that the pro-
posed forcing scheme is capable of adjusting the surface
tension.

To simulate multi-component multiphase flows, the cohe-
sive force acting on the σ th component is [89]

Fc,σ (x) = −Gcρσ (x)
N∑
i=1

w(|ei |2)ρσ (x + ei )ei , (29)

where σ and σ̄ represent two different fluid components, and
Gc is the cohesion strength. The fluid-solid force acting on
the σ th component is

Fads,σ (x) = −Gads,σ ρσ (x)
N∑
i=1

w(|ei |2)s(x + ei )ei , (30)

where Gads,σ can be used to adjust the interaction strength
between each fluid and a wall. Huang et al. [94] proposed
an elegant formula to determine the contact angle using
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Fig. 5 Validation of the Laplace’s law [56]. Reproduced fromRef. [56]
(Copyright 2015, Elsevier)

the adhesion parameters so that a desired fluid-solid contact
angle can be achieved, which is written as

cos θ = Gads,2 − Gads,1

Gc
ρ1−ρ2

2

. (31)

One issueof theoriginalmulticomponentmultiphasepseudo-
potential LBmodel is that model is limited to a fixed Schmidt
number. To address this issue, Chai and Zhao [81] devised
a potential-based MRT LB model such that multicomponent
flows with different molecular weights can be simulated.

To simulate thermal multiphase flows, either the double
distribution function (DDF) approach [79,95–97] or the lat-
tice Boltzmann-finite difference (LB-FD) hybrid approach
[80,98,99] can be adopted. In the DDF approach, another
distribution function is utilized to solve the energy equation
in addition to the distribution function used to solve the flow
equation. In the hybrid approach, the LB method is adopted
to solve the flow equation together with the finite difference
method to solve the energy equation. This hybrid approach
wasmotivated by two reasons. First, the present available LB
models cannot solve the target energy equation exactly, par-
ticularly when the flow equation includes an additional force
term; secondly, the LB method has no obvious advantage
over the finite difference method in terms of efficiency when
solving the energy equation, because the source term in the
energy equation, which is responsible for the phase change,
has to be discretized using the finite differencemethod. Start-
ing from the local balance law for entropy, the temperature
equation is given as

ρcv

DT

Dt
= ∇ · (λ∇T ) − T

(
∂pEOS
∂T

)

ρ

∇ · v, (32)

where λ denotes the thermal conductivity and cv denotes the
specific heat at constant volume.

To implement outflowboundary conditions formultiphase
flow LB simulations, Lou et al. [100] evaluated the Neumann
boundary condition, the extrapolation boundary condition,
and the convective boundary condition. They concluded that
the convection boundary condition works best among these
three types. Similarly, Li et al. [101] investigated the outlet
boundary condition for multiphase flows with large liquid-
gas density ratios.

5 LB model for coupled fluid flow and mass
transport in porous media

Numerical models for fluid flows and associated transport
processes in porous media can be classified into two cat-
egories according to the physical length scale, namely the
representative elementary volume (REV)-scale model and
the pore-scale model. The REV-scale model considers the
presence of porous media based on empirical relations. For
example, the Kozeny–Carman relation is used to estimate
permeability, and the Bruggeman relation is used to esti-
mate effective diffusivity. The advantage of the REV-scale
model is that it is computationally efficient for modeling
physical and chemical processes occurring in porous media.
However, the accuracy of REV-scale models rely heav-
ily on the empirical relations. The pore-scale model, on
the contrary, allows the consideration of realistic microp-
orous structure, that is, detailed pore geometry is directly
resolved. The constitutive closure relations, such as perme-
ability or effective diffusivity as a function of porosity, can be
calculated with the aid of pore-scale fluid flow/mass trans-
fer information. The advantage of the pore-scale model is
that it can truly reflect the geometrical effect of a porous
medium without adopting an empirical relation as that used
in REV-scale model. However, the computational cost of
pore-scale models is usually very high, which limits their
wide application based on today’s lab-scale computational
resources.

In REV-scale LB models, the porous medium is treated
as a continuous medium. The porosity, the permeability and
other statistical properties of the porous medium are essen-
tial input values in these models. A number of empirical
mathematical models have been proposed to describe the
fluid flows in a porous medium, such as Darcy’s model, the
Brinkman model, and the generalized model [102]. Darcy’s
model is appropriate when the Reynolds number of flow in
the porous medium is small, and its mathematical formula-
tion is

∇ p = − μ

K
u, (33)
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where K is the permeability of the porous medium. The
Brinkman model extends the Darcy model by adding a vis-
cous term, which is written as

∇ p = − μ

K
u + μe∇2u, (34)

where μe represents an effective viscosity which can be
different from the fluid viscosity. The generalized model
includes the linear resistance (Darcy) term, the viscous
(Brinkman) term, together with the non-linear resistance
(Forchheimer) term. The governing equation is written
as

∇ · u = 0, (35a)
∂u
∂t

+ (u · ∇)
(u

ε

)
= − 1

ρ
∇ (εp) + υe∇2u + F, (35b)

where u is the apparent velocity, p is the apparent pressure,
υe is the effective viscosity, F is the total force given as

F = −ευ

K
u − εFε√

K
|u|u + εG. (36)

Here, υ denotes the fluid viscosity, and G denotes the exter-
nal body force. The structure function Fε depends on the
permeability K and the porosity ε.

In 2002,Guo andZhao [103] devised anLBmodel to solve
the above generalized equations. In this model, the evolution
equation is written as

fi (x + eiδt , t + δt ) − fi (x, t)

= −1

τ

[
fi (x, t) − f (eq)

i (x, t)
]

+ δt F
′
i , (37)

where the equilibrium distribution includes porosity ε to con-
sider the presence of a solid porous matrix

f (eq)
i = ωiρ

[
1 + ei · u

c2s
+ uu: (eiei − c2s I

)

2εc4s

]
(38)

and the force term also includes the effect of a porous struc-
ture,

F ′
i = ωiρ

(
1 − 1

2τ

) [
ei · F
c2s

+ uF:(eiei − c2s I)
εc4s

]
. (39)

The macroscopic velocity u is calculated as

u = v

c0 +
√
c20 + c1|v|

, (40)

where v is a temporary velocity and it is defined as

ρv =
∑
i

ei fi + δt

2
ερG. (41)

Here,G is the external body force. The parameters c0 and c1
are given as

c0 = 1

2

(
1 + ε

δt

2

ν

K

)
, c1 = ε

δt

2

Fε√
K

. (42)

To solve the coupled fluid flow and heat transfer problem
in porous media, an additional energy equation is needed.
Assuming a local thermal equilibrium exists between the flu-
ids and the solid matrix, then the energy equation is

σ
∂T

∂t
+ u · ∇T = ∇ · (αm∇T ) , (43)

where σ = ε+(1−ε)ρscps/(ρfcpf ) describes the solid-fluid
heat capacity ratio, and αm = km/(ρfcpf ) is the effective
thermal diffusivity.

In 2005, Guo and Zhao [104] extended their previous LB
model [103] to consider the coupled fluid flow and heat trans-
fer problem in porous media. The LB equation for fluid flow
is the same as shown in Eq. (37); while another distribution
function gi is adopted to solve the energy equation, which is
written as

gi (x+eiδt , t+δt )−gi (x, t) = − 1

τg

[
gi (x, t) − g(eq)

i (x, t)
]
.

(44)

The equilibrium distribution function is given by

g(eq)
i (x, t) = ωi T

(
1 + ei · u

c2s

)
. (45)

The fluid temperature T is calculated as

σT =
∑
i

gi . (46)

In the work of Guo and Zhao [103,104], the collision oper-
ator in the LB equation is the LBGK collision operator.
Motivated by the fact that the MRT collision operator has
shown superior numerical accuracy and stability in a vari-
ety of applications, Liu et al. [105] proposed an MRT-LB
model for convection heat transfer in porous media follow-
ing the above approach to devise the REV-scale LB model.
To increase the numerical stability, Wang et al. [106] also
proposed a local computing scheme to calculate the shear
rate and the temperature gradient. In addition, it is worth
mentioning that the above REV-scale LB models have also
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been extended to study axisymmetric thermal flows [107]
and electro-osmotic flows [108] through porous media.

In the pore-scale LB model, the fluid flow is described
by the Navier–Stokes equation, the heat/mass transport can
be described by a convection–diffusion equation (CDE), the
electric potential of ions can be described by the Poisson–
Boltzmann equation (PBE), and the presence of porous
medium is treated as solid obstacles. Despite the pore geom-
etry being complex and irregular, in the LB method, the
solid boundary condition can be achieved easily by following
the bounce-back rule, which greatly reduces the program-
ming effort. What is more, recent advancements in parallel
programming using both the central processing unit (CPU)
and the graphics processing unit (GPU) architectures facili-
tate large-scale engineering applications [109]. On the other
hand, the LB method has been extended as a mathemat-
ical tool to solve CDEs [110–119] and PBEs [120–127],
indicating it is viable for simulating coupled fluid flow
and heat/mass transport processes. For example, in 2013,
Chai and Zhao [115] proposed an LB model for CDEs, and
throughChapman–Enskog analysis they proved that theCDE
can be recovered correctly from their model. Later, Chai
and Zhao [116] extended their model to the MRT version,
and proposed a nonequilibrium scheme for computing the
heat/mass flux. For CDEs with variable coefficients, Li et
al. [117] proposed an LBGKmodel for n-dimensional steady
CDE through modifying the equilibrium distribution func-
tion; later, Li et al. [118] further proposed to achieve variable
coefficients in CDEs through the introduction of an auxil-
iary distribution function in the LB model. Recently, Chai et
al. [128] devised an MRT LB model for general nonlinear
anisotropic CDEs based on the work of Shi and Guo [110].

A broad interest in applying pore-scale LB models is to
predict the transport properties, including permeability [129–
131], effective thermal conductivity [132–135], heat transfer
coefficient, effective mass diffusivity [136–138], and mass
transfer coefficient. In this aspect, one should be cautious
when choosing the LBGK collision operator, as Pan et
al. [129] reported that the permeability calculated based
on LBGK model depends on the relaxation time. To elimi-
nate this unphysical effect, the MRT model is recommended
with specific relaxation time parameters. Recently, Chai et
al. [138] obtained a similar conclusion when calculating
effective diffusivity in porous media.

6 LB model for particulate flows

Numerical approaches for studying suspensions are gen-
erally classified into three categories based on the levels
of detail and accuracy required [139,140]. The first cate-
gory is the two-fluid approach, i.e., both solid and fluid
phases are described as interpenetrating continua. The sec-

ond category is the point-particle approach, in which the
solid particle is treated as a discrete mass point and the fluid
phase is considered as a continuum. In the point-particle
approach, the drag closure is used for fluid-solid coupling.
The third category is the particle-resolved approach, where
fluid flow is solved through imposing appropriate bound-
ary conditions at the particle surfaces, while the velocities
and positions of the particles are determined by explicitly
computing the fluid forces acting on the particles. While
the particle-resolved simulation is based on first-principles,
the computational cost limits the suspension system that can
be simulated. Thus, there is a trade-off between computa-
tional efforts and resolving down to a fine spatial and time
scale.

In the particle-resolved simulations, the motion of parti-
cles and fluid must be coupled together. These simulation
techniques contains four essential parts: simulating fluid
flows governed by the Navier–Stokes equation, simulating
particle motions governed by Newton’s second law and
Euler’s second law, handling the boundary condition at the
moving particle’s surface, and modeling fluid-particle and
particle–particle interactions. For simulation of fluid flows
governed by the Navier–Stokes equation, we have reviewed
the LB formulations in Sect. 3; for simulation of particles
motions, at each time step, the Euler method or Runge–Kutta
method can be applied for solving the following ordinary dif-
ferential equations:

Mp
dU(t)

dt
= F(t), (47)

Ip · d�(t)

dt
+ �(t) × [

Ip · �(t)
] = T(t), (48)

where Mp is the mass and Ip is the inertial tensor of the
solid particle. U is the particle center velocity, � is the par-
ticle angular velocity. F is the total force and T is the total
torque exerted on the solid particle. For homogenous spheri-
cal particles, the nonlinear term �(t) × [

Ip · �(t)
]
vanishes,

which greatly simplifies solving Eq. (48). However, for irreg-
ularly shaped particles, the solution of Eq. (48) cannot be
obtained straightforwardly due to its inherent singularity.
For example, in the case of simulating ellipsoid particles,
four quaternion parameters should be adopted as generalized
coordinates [141–147].

At the particle’s surface, usually the no-slip boundary con-
dition should be guaranteed. In theLBmethod, the fluid-solid
interface can be easily implemented in regular Cartesian
grids, thereby improving the computational efficiency for
moving particle simulations. Specifically, the no-slip bound-
ary condition can be achieved through modifications to
the density distribution function encountering the surface.
Although the basic implementation of a no-slip boundary
condition is rather simple [148,149], Lishchuk et al. [150]
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found that the simple bounce-back scheme requires an empir-
ical correction for the effective hydrodynamic radius. To
obtain more accurate curved wall boundaries, the interpo-
lated bounce-back scheme can be adopted. Recently, Peng
et al. [151] compared various interpolated bounce-back
schemes, including the scheme proposed by Bouzidi et
al. [152] (or the simplified version proposed by Lallemand
and Luo [153]), Mei et al. [154,155], Yu et al. [10], and
Chun and Ladd [156]. They concluded that the force fluctu-
ation on the particle can be reduced with the aid of quadratic
interpolation schemes, and Bouzidi et al.’s scheme appears
to perform best [151]. In addition to particulate flowwith no-
slip boundary conditions at the fluid-solid interface, recently
Tao et al. [157] investigated the dynamics of slippery parti-
cles suspended in Newtonian fluids.

To calculate the force and torque exerted by the fluid on
the solid particle, the momentum-exchange method [158] is
suggested to be adopted due to its simplicity and robust-
ness compared with stress integration method [159]. In the
momentum-exchange method, the hydrodynamic force act-
ing on the solid surface is calculated by summing up the local
momentum exchange of the fluid parcels during the bounce
back process at the fluid solid interface over boundary links.
Because the original momentum-exchange method proposed
byLadd [148,149] lacks local Galilean invariance [160], sev-
eral modified momentum-exchange methods were proposed.
In 2013, Chen et al. [161] proposed to calculate the total force
F and total torque T as

F =
∑
x f

∑
ibl

{ [
f +
i (x f , t) + fī (x f , t + δt )

]
ei

−2ωiρ0
ei · uw

c2s
uw

}
, (49a)

T =
∑
x f

∑
ibl

(xw − xc) ×
{ [

f +
i (x f , t) + fī (x f , t + δt )

]
ei

−2ωiρ0
ei · uw

c2s
uw

}
, (49b)

where f +
i denotes post-collision distribution function, and fī

denotes the distribution function associated with the velocity
eī = −ei . xc denotes the center position of the solid particle.
Later, in 2014,Wen et al. [162] proposed to calculate the total
force F and total torque T as

F =
∑
x f

∑
ibl

[
f +
i (x f , t) (ei −uw) − fī (x f , t+δt )(eī −uw)

]
,

(50a)

T =
∑
x f

∑
ibl

(xw − xc) × [
f +
i (x f , t) (ei − uw)

− fī (x f , t + δt )(eī − uw)
]
. (50b)

Peng et al. [151] further demonstrated that using these
two methods can correctly simulate the Segré–Silberberg
phenomenon (as illustrated in Fig. 6 [163]), whereas the con-
vectional momentum-exchange method fails. What is more,
the simulation results show that the difference between these
two methods is negligible. Recently, Peng et al. [164] argued
that the origin ofGalilean invariance violation in the presence
of a moving solid-fluid interface is due to the bounce-back
scheme in addition to themomentum exchangemethod used,
and they demonstrated that their newly proposed bounce-
back scheme can significantly improve the accuracy of the
simulated flow velocity in turbulent flows.

To prevent overlap between two particles or overlap
between a particle and a wall when their distance is small,
artificial repulsive force models, such as the spring force

Fig. 6 A neutrally buoyant particle migrates in a pressure driven tube illustrating the Segré–Silberberg phenomenon [163]. Reproduced from
Ref. [163] (Copyright 2016, Elsevier)
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model [165] and the lubrication force model [166], should
be adopted. In the spring force model, the repulsive force is
given as

FR =
{
0, if |xs | > s,
C
εw

( |xs |−s
s

)2 xs|xs | , if |xs | < s.
(51)

Here, εw represents the stiffness parameter and s represents
the threshold distance. C is the force scale, and xs denotes
the vector with the smallest norm value which points from
one particle to another or points from the wall to the particle.
In the lubrication force model, the repulsive force is given as

FR=
{
0, if |xs | > s,

−6πρυ
R2
a R

2
b

(Ra+Rb)
2

(
1

|xs | − 1
s

)
(va − vb)

xa−xb|xa−xb | , if |xs | < s.

(52)

Here, xa and xb are the particle center positions, va and vb
are the corresponding particle velocities along (xb −xa). Xia
et al. [167] and Huang et al. [144] demonstrated that these
two repulsive force models give almost the same results.

As a fixed Cartesian grid is used in the LB method,
for suspension flow simulation, another issue is to han-
dle the information at “new” fluid nodes, namely the fluid
node transformed from the solid node inside a solid parti-
cle due to the motion of particles. Recently, Tao et al. [168]
examined the spurious force fluctuations produced by vari-
ous refilling schemes, and they proposed a unified iterative
scheme for moving boundaries, which provides a consistent
treatment for both boundary nodes and free nodes and can
also suppress spurious force fluctuations [169]. Meanwhile,
Peng et al. [151] demonstrated the robustness of a velocity-
constrained normal extrapolation refilling scheme [170] for
particulate flow at high Reynolds numbers.

7 Applications in fuel cells and flow batteries

The application of a gas–liquid two-phase LB model for
simulation in a PEMFC gas diffusion layer (GDL) dates
back to 2007 by Niu et al. [171] and Sinha et al. [172].
Since then, a variety of studies have been conducted; a con-
densed review of the work before 2010 can be found by
Mukherjee et al. [12]. Here, we would like to add more
discussion on this topic in addition to the works that have
already been presented in that review paper. For example,
Hao and Cheng [173] simulated water invasion in an ini-
tially gas filled GDL and investigated the effect of GDL
wettability on water transport. They found that in a highly
hydrophobic GDL, the water transport exhibits capillary fin-
gering characteristics; in a neutral wettability GDL, water
transport falls in the stable displacement regime. Moreover,

saturation in the GDL barely changes after water breaks
through it. Their results demonstrated that to alleviate water
flooding issues, introducing hydrophilic passages in GDL
is a promising strategy. Later, Hao and Cheng [174] simu-
lated two-phase flows in a reconstructed carbon paper GDL
(shown in Fig. 7). They calculated the relative permeabili-
ties of body-centered sphere beds at different non-wetting
phase saturations and then compared the simulation results
with experimental data for further validation. After that, they
investigated the wettability effects and the anisotropic char-
acteristics on the relative permeability of GDL. Their results
show that the relative permeability of both wetting and non-
wetting phases is hardly influenced by the flow orientation,
and only the non-wetting phase relative permeability is influ-
enced by the wettability.

Chen et al. [175] investigated the coupled pore-scale fluid
flow and mass transport in a carbon paper GDL of a PEMFC
with an interdigitated flow channel. The porous geometry is
reconstructed based on the statistical information of carbon
paper GDL, and the two-phase flow simulation was validated
by bubble test and static angle test. They found that in a
PEMFC with an interdigitated flow channel, the liquid water
within the GDL shows slow creeping characteristics when
the capillary force is dominant, and shows quick moving
characteristics when the shear force is dominant. What is
more, higher contact angle hinders liquid water advancing
when the capillary force is dominant, but facilitates liquid
water transport when the shear force is dominant.

Efforts have also beenmade to study gas–liquid two-phase
flows in the flow channel of PEMFCs using anLBmultiphase
model. For example, Hao and Cheng [176] simulated the for-
mation process of a liquid droplet emerging through a pore on
theGDLsurface, and the subsequentmovement of the droplet
under gas shear (shown in Fig. 8). They showed the dynamic
behavior of the droplet emergence, growth, detachment, and
movement in the flow channel. They found that the droplet
can be lifted from a highly hydrophobic GDL surface, which
facilitates the gas reactant transport as a result of increased
GDL surface. It should be noted that droplet dynamics in a
channel or on a flat surface have also been extensively stud-
ied using the volume of fluid method [177], the level set
method [178], and the phase field method [179]. However,
these numerical techniques are based on directly solving the
Navier–Stokes equations, which remains a challenging issue
in simulating multiphase flows, as it is difficult to track the
interface dynamics that physically result from microscopic
interactions between molecules.

There are also some attempts to apply the coupled fluid
flow and mass transport LB model in aqueous redox flow
batteries. Qiu et al. [180,181] digitally reconstructed the
porous electrode geometries from X-ray computed tomogra-
phy (XCT) imaging, and the processed XCT data were used
as geometry inputs for the pore-scale model to study elec-
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Fig. 7 Non-wetting phase distribution in carbon paper GDL [174]. Reproduced from Ref. [174] (Copyright 2010, Elsevier)

trode morphology effects on the performance characteristics
of an all-vanadium redox flow battery. Results were obtained
for the pore-scale cell potential distribution, concentration
distribution, overpotential and current density distribution
(as shown in Fig. 9). They concluded that electrode structures
with high surface area and low porosity will result in more
uniform and lower overpotential fields, whereas the pres-
sure drop will be increased implying extra consumption of
pump work. The influence of electrolyte flow rate and exter-
nal drawing current on the cell performance has also been
investigated. Though the pore-scale simulation results of cell
voltage generally agree with a simplifiedmodel derived from
the charge conservation principle, a more rigorous validation
of this model for simulating pore-scale flow field, concentra-
tion field, and electron field is a challenge. What is more,
the tedious programming implementation and the high cost

of extracting XCT data in this pore-scale approach limits its
wide application in the short term.

8 Summary and outlook

The past 30years have witnessed rapid developments of
the LB method in both fundamentals and applications. The
potential of the LB method to solve various challenging
problems in science and engineering, such as gas–liquid two-
phase flows, coupled fluid flow and mass transport in porous
media, and particulate flows, has attracted great interest in
the computational fluid dynamics and numerical heat trans-
fer communities. This review paper focuses on the above
topics and highlights its applications in fuel cells and flow
batteries.
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Fig. 8 Snapshots of the droplet formation through a micro-pore in the bottom wall [176]. Reproduced from Ref. [176] (Copyright 2009, Elsevier)

For fuel cell applications, gas–liquid two-phase flows in
both the porous media and flow channels of PEMFCs have
been extensively explored. However, all the reported simula-
tions are based on isothermal multiphase flow models, while
the important thermal effects including evaporation and con-
densation of water in a PEMFC have not been taken into
account. Recent advances in thermal phase change pseudo-
potential LB models [79,80] are expected to be applied on
this topic in addition to their current applications in flow
boiling. A more challenging problem is the simulation of
multiphase flows in a DMFC, where the fuels are methanol
and oxygen and the products are carbon dioxide gas and
water, indicating that multicomponent multiphase flows and
coupled phase change heat transfer have occurred [182].

For now, we have not seen theoretical breakthroughs of the
LBmethod for simulating multicomponent multiphase flows
with phase change heat transfer.

For aqueous redox flow battery applications, though pio-
neering work on coupled fluid flow and mass transport in an
all-vanadium redox flow battery has been done [180,181],
further extension to other aqueous redox flowbattery systems
is non-trivial. This is mainly due to the fact that electro-
chemical reactions are strongly coupled with the transport
processes in the electrodes of aqueous redox flow batteries,
while the correct and efficient implementation of general
electrochemical reaction boundary conditions in the LB
method deserves further investigation. Another challenging
problem using this pore-scale simulation tool is to optimize
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Fig. 9 Pore-scale simulations of current density distribution on the
electrode surface [180]. Reproduced from Ref. [180] (Copyright 2012,
Elsevier)

the morphology of porous electrodes, including pore size,
shape, and distribution, to simultaneously maximize the flow
of all the species.

For suspension redoxflowbattery applications, a key issue
is to minimize the viscosity of the suspension fluid while
increasing the solid fraction as much as possible. This brings
us to the question of modeling dense suspension flows using
the LB method, specifically the problem of accurate model-
ing of the interactions between solid particles. The artificial
repulsive force models currently used, such as the spring
force model [165] and the lubrication force model [166], can
be questioned in their treatment of particle interactions in a
dense suspension versus those in a dilute suspension, and the
scenarios involving multi-particle collisions make the simu-
lation much more challenging.

In conclusion, the application of the LB method to study
transport phenomena in fuel cells and flow batteries is still

not mature enough to support comprehensive technological
development. Significant efforts are needed to address both
scientific issues and industrial challenges.
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