
International Journal of Heat and Mass Transfer 109 (2017) 577–588
Contents lists available at ScienceDirect

International Journal of Heat and Mass Transfer

journal homepage: www.elsevier .com/locate / i jhmt
Accelerated lattice Boltzmann simulation using GPU and OpenACC with
data management
http://dx.doi.org/10.1016/j.ijheatmasstransfer.2017.02.032
0017-9310/� 2017 Elsevier Ltd. All rights reserved.

⇑ Corresponding author.
E-mail address: metzhao@ust.hk (T.S. Zhao).
A. Xu, L. Shi, T.S. Zhao ⇑
Department of Mechanical and Aerospace Engineering, The Hong Kong University of Science and Technology, Hong Kong, China

a r t i c l e i n f o
Article history:
Received 1 December 2016
Received in revised form 9 February 2017
Accepted 13 February 2017

Keywords:
GPU computing
OpenACC
Lattice Boltzmann method
Heat and mass trasnfer
a b s t r a c t

We assess the performance of the combined Open Accelerator (OpenACC) programming standard and
graphics processing unit (GPU) accelerator for lattice Boltzmann (LB) simulations of fluid flow, heat
and mass transfer. By optimizing the data layout, minimizing the memory access frequency, and adjust-
ing the number of gangs and vector length, we show that the enhanced parallel computations can result
in orders of magnitudes of speedup relative to the serial implementation of the LB algorithm. Based on
such implementations, benchmark quality results are obtained with fine grid of 20492 for both two-
dimensional lid driven cavity flow with Reynolds number up to 7500, and double diffusive cavity flow
with solute Rayleigh number up to 108.

� 2017 Elsevier Ltd. All rights reserved.
1. Introduction

The consistent demand for higher simulation accuracy and lar-
ger computing capability has driven the prosperous of high perfor-
mance computing community [1]. During the past decades, the
performance of central processing unit (CPU) microprocessor chip
has been exponentially growing and follows the Moore’s law,
which indicates that the chip’s performance will double every
two years. As the microprocessor reduces its physical size to tens
of nanometer, the Moore’s law seems nearing its end [2]. On the
other hand, utilizing graphics processing unit (GPU) as computa-
tional accelerators has attracted great attention due to its com-
bined tremendous computing power and superior memory
bandwidth. For example, the memory bandwidth is 480 gigabyte
per second (GB/s) and the peak double precision floating point per-
formance can reach 2910 giga floating-point operations per second
(GFLOPS) for the newest NVIDIA� Tesla� K80 GPU accelerator,
which is an order of magnitude higher than that for the newest
Intel� CoreTM i7 CPU processor.

The lattice Boltzmann (LB) method, originated from cellular
automata and also derived from the Boltzmann kinetic theory,
has been proven to be a promising tool for simulating fluid flows
and associated transport phenomena. It is based on mesoscopic
kinetic equations describing the evolution of fluid parcels, and
boundary conditions can be easily implemented, thus making it
suitable for simulating complex fluid systems, such as gas-liquid
two-phase flow [3–6], particulate flow [7–10], flow in porous
media [11–13], and so on. More importantly, the locality nature
of extensive computations makes the LB method favorable for mas-
sively parallel programming, which is crucial for practical engi-
neering applications.

Parallel computing framework utilizing GPUs includes Open
Computing Language (OpenCL), Compute Unified Device Architec-
ture (CUDA), and Open Accelerator (OpenACC). OpenCL is an open
standard for programming heterogeneous platforms consisting of
CPUs and GPUs. It specifies C/C++ programming language, and pro-
grammers must explicitly manage the way that a problem is
decomposed to the hardware. CUDA works with programming lan-
guages such as C, C++ and Fortran. Although it reduces the effort in
graphics programming compared to OpenCL, it only runs on NVI-
DIA’s graphics card. These two programming standards require
substantial changes in the original code, thus threatening the code
correctness, portability, and maintainability. OpenACC is a high
level, platform independent, and directive based programming
standard being jointly developed by NVIDIA, Cray, PGI, and CAPS.
Following hints provided by programmers as annotations to the
original code, compute intensive calculations are offloaded to the
accelerator device to utilize the superior computing capabilities
of the accelerator.

A number of studies have been conducted to utilize the comput-
ing power of GPUs to accelerate LB simulations [14–19]. However,
most of the previous studies were based on CUDA acceleration,
which may pose severe restriction on the target hardware. For
example, Sailfish [20], a free computational fluid dynamics solver
based on lattice Boltzmann method, serves as a reference GPU

http://crossmark.crossref.org/dialog/?doi=10.1016/j.ijheatmasstransfer.2017.02.032&domain=pdf
http://dx.doi.org/10.1016/j.ijheatmasstransfer.2017.02.032
mailto:metzhao@ust.hk
http://dx.doi.org/10.1016/j.ijheatmasstransfer.2017.02.032
http://www.sciencedirect.com/science/journal/00179310
http://www.elsevier.com/locate/ijhmt


578 A. Xu et al. / International Journal of Heat and Mass Transfer 109 (2017) 577–588
implementation. It is based on CUDA/OpenCL programming stan-
dard and implements LB models for single- and multi-component
fluid flows. To the best of our knowledge, very few implementa-
tions of LB method incorporating OpenACC acceleration have been
described in the literature [21], In Ref. [21], a D2Q37 lattice model
was adopted for the two-dimensional simulation of convective tur-
bulence; while in our work, the most widely used D2Q9 lattice
model and D2Q5 lattice model will be adopted for the two-
dimensional simulation of laminar fluid flows and heat/mass trans-
fer, respectively. The benefit of using simpler lattice model is that
memory storage is reduced, while there is no loss of simulation
accuracy for the laminar flow simulations. The immature of Open-
ACC application in LB simulation may be mainly due to the percep-
tion that simplicity and portability of OpenACC come at a price of
degrading parallel performance. This motivates us to address
implementation issues when using OpenACC to accelerate LB sim-
ulations, i.e., optimizing the data layout to meet the requirement of
coalescence memory access pattern, minimizing the memory
access frequency by fusion the collision and streaming subroutine,
and adjusting number of gangs and vector length to maximize uti-
lize specific hardware architecture. We show that ultra-high com-
putational performance can be achieved with proper
implementations, including simulations involving coupled fluid
flow, heat and mass transfer processes. By adopting OpenACC
accelerated LB simulations, highly refined computations can be
made. To demonstrate this point, three two-dimensional bench-
mark problems, namely, lid driven cavity problem, buoyancy dri-
ven cavity problem, and double diffusive cavity problem, with
the grid size up to 20492 will be presented.

2. Numerical method

2.1. LB model for fluid flow

Fluid flows described by the incompressible Navier-Stokes
equations can be written as

r � u ¼ 0 ð1aÞ
@u
@t

þ u � ru ¼ � 1
q
rpþ mr2u ð1bÞ

where u is the fluid velocity, q is the fluid density, p is the pressure,
and m is the kinematic viscosity.

In LB method, to solve Eqs. (1a) and (1b), the evolution equation
of density distribution function based on D2Q9 lattice model can
be written as

f iðxþ eidt ; t þ dtÞ � f iðx; tÞ ¼ �ðM�1SÞij mjðx; tÞ �mðeqÞ
j ðx; tÞ

h i
ð2Þ

where f i is the density distribution function, t is the time, dt is the
time step, x is the fluid parcel position, and ei is the discrete velocity
along the ith direction. To approximate incompressible flows and
minimize the round-off error, we only consider density fluctuation
dq in various parts of equilibrium following Luo et al. [22]. Then, the
equilibrium moments mðeqÞ is given by

mðeqÞ ¼ dq; �2dqþ 3
q0

ðj2x þ j2yÞ; dq� 3
q0

ðj2x þ j2yÞ; jx; �jx; jy;
�

�jy;
1
q0

ðj2x � j2yÞ;
1
q0

jxjy

�T
ð3Þ

The relaxation matrix is given by S ¼ diagðsq; se; s�; sj; sq; sj; sq; sm; smÞ,
where the relaxation parameters are given as
sq ¼ sj ¼ 0; se ¼ s� ¼ sm ¼ 1=sf ; sq ¼ 8ð2sf � 1Þ=ð8sf � 1Þ, and sf is
determined by the kinematic viscosity of the fluids.

The density variation dq and velocity u are obtained from
dq ¼
X8
i¼0

f i; u ¼
X8
i¼0

eif i ð4Þ

and the kinetic viscosity m is given by

m ¼ 1
3
c2 sf � 1

2

� �
dt ð5Þ

where c ¼ dx=dt is lattice constant, and c ¼ dx ¼ dt ¼ 1 is adopted in
this work.

2.2. LB model for fluid flow and heat transfer

In incompressible thermal flows, temperature variation will
cause density variation thus resulting in buoyancy effect. Follow-
ing the Boussinesq approximation, the temperature can be treated
as a passive scalar, and its influence to the velocity field is through
the buoyancy term [23,24]. Then, the governing equations can be
written as

r � u ¼ 0 ð6aÞ
@u
@t

þ u � ru ¼ � 1
q0

rpþ mr2uþ gbT T � T0ð Þŷ ð6bÞ
@T
@t

þ u � rT ¼ jr2T ð6cÞ

where T is the temperature, bT is the thermal expansion coefficient,
and j is the thermal diffusivity. g is the gravity value, and ŷ is unit
vector in the vertical direction. q0 and T0 are reference density and
temperature, respectively.

In LB method, to solve Eqs. (6a) and (6b), the evolution equation
of density distribution function is similar to Eq. (2) except with the
addition of forcing term, which is written as

f iðxþ eidt; t þ dtÞ � f iðx; tÞ ¼ �ðM�1SÞij mjðx; tÞ �mðeqÞ
j ðx; tÞ

h i
þ dtF

0
i ð7Þ

where F 0
i is the forcing term in velocity space, and is given by

F0 ¼ M�1 I� S
2

� �
M~F ð8Þ

and the term M~F is given by

M~F ¼ 0; 6u � F; �6u � F; Fx; �Fx; Fy; �Fy;2ðuxFx � uyFyÞ; ðuxFy þ uyFxÞ
� �T

ð9Þ
where F ¼ gbTðT � T0Þŷ. The density variation dq and velocity u are
obtained from

dq ¼
X8
i¼0

f i; u ¼
X8
i¼0

eif i þ
1
2
F ð10Þ

To solve Eq. (6c), the evolution equation of temperature distribution
function based on D2Q5 lattice model can be written as

giðxþ eidt ; t þ dtÞ � giðx; tÞ ¼ �ðN�1Q Þij njðx; tÞ � nðeqÞ
j ðx; tÞ

h i
ð11Þ

where gi is the temperature distribution function.
The equilibrium moments nðeqÞ is given by

nðeqÞ ¼ T; uT; vT; aTT; 0½ �T ð12Þ
where aT is a constant determined by the thermal diffusivity as

aT ¼ 20
ffiffiffi
3

p
j� 4 ð13Þ

The relaxation matrix is given by Q ¼ diagð0; qT ; qT ; qe; qmÞ, where
the relaxation parameters are given as qT ¼ 3�

ffiffiffi
3

p
and

qe ¼ qm ¼ 4
ffiffiffi
3

p
� 6.



A. Xu et al. / International Journal of Heat and Mass Transfer 109 (2017) 577–588 579
The temperature T is obtained from

T ¼
X4
i¼0

gi ð14Þ
2.3. LB model for fluid flow, heat transfer and mass transfer

In addition to temperature variation, concentration variation
will also cause density variation, thus resulting in buoyancy effect.
Analogs to the Boussinesq approximation, the concentration can
also be treated as a passive scalar, and its influence to the velocity
field is through the buoyancy term [25]. Then, the governing equa-
tions can be written as

r�u¼0 ð15aÞ
@u
@t

þu �ru¼� 1
q0

rpþmr2uþgbT T�T0ð Þŷþgbs C�C0ð Þŷ ð15bÞ
@T
@t

þu �rT ¼jr2T ð15cÞ
@C
@t

þu �rC¼Dr2C ð15dÞ

where C is the concentration, bs is the concentration expansion
coefficient, and D is the mass diffusivity. q0; T0 and C0 are reference
density, temperature, and concentration, respectively.

In LB method, to solve Eqs. (15a) and (15b), the evolution equa-
tion of density distribution function is the same as Eq. (7), and F in
Eq. (9) is given as F ¼ gbTðT � T0Þŷ þ gbsðC � C0Þŷ; to solve Eq.
(15c), the evolution equation of temperature distribution function
is the same as Eq. (11); to solve Eq. (15d), the evolution equation of
concentration distribution function based on D2Q5 lattice model
can be written as

hiðxþ eidt ; t þ dtÞ � hiðx; tÞ ¼ �ðN�1Q Þij njðx; tÞ � nðeqÞ
j ðx; tÞ

h i
ð16Þ

where hi is the concentration distribution function. Here, the equi-
librium moments nðeqÞ is given by

nðeqÞ ¼ C; uC; vC; asC; 0½ �T ð17Þ
where as is a constant determined by the mass diffusivity as

as ¼ 20
ffiffiffi
3

p
D� 4 ð18Þ

The relaxation matrix is given by Q ¼ diagð0; qC ; qC ; qe; qmÞ, where
the relaxation parameters are given as qC ¼ 3�

ffiffiffi
3

p
and

qe ¼ qm ¼ 4
ffiffiffi
3

p
� 6.

The temperature C is obtained from

C ¼
X4
i¼0

hi ð19Þ
Fig. 1. Schematic illustration of LB flow chat.
3. OpenACC implementation and optimization

3.1. GPU programming using OpenACC

CPUs are optimized for low latency access to cached data, while
GPUs are optimized for data parallelism and hide latency with
intensive computations. In OpenACC parallel execution model,
both computation and data are offloaded from the CPU host to
the GPU accelerator, so that the combined tremendous computing
power and superior memory bandwidth of GPU can be utilized.

To ensure the correctness of the code employing OpenACC
acceleration, an incremental approach to accelerate the code
should be taken. The first step is to assess the numerical algorithm
and estimate the running time each subroutine takes. In LB
method, the standard implementation consists of four subroutines:
collision, streaming, bounce-back, and calculating macro variables
as illustrated in Fig. 1. Among them, the collision subroutine takes
the most computational time due to extensive updates of distribu-
tion function along nine directions in two-dimensional simulations
or nineteen directions in three-dimensional simulations at a fluid
node; in the streaming subroutine, the information of distribution
function at a node is simply transferred to its neighboring, and
there is no tedious mathematical computations; the bounce-back
subroutine only works at the boundary nodes to mimic various
boundary conditions; although the subroutine of calculating macro
variables also takes effect at fluid nodes in the whole computa-
tional domain, its computational cost is much lower compared to
the collision subroutine due to much simpler mathematical manip-
ulations. The second step is to use OpenACC parallel loop directive
to parallelize computational intensive loops. Thanks to the locality
nature of LB method, the subroutines of collision and calculating
macro variables completely use local node information. Although
the streaming subroutine involves data transfer, the data depen-
dence problem can be avoided by using two distribution functions
for data swapping. The third step is to optimize data locality and
minimize data transfer between CPU host and GPU accelerator
through PCIe. After initializing the macroscopic field information
(such as velocity u, density q, temperature T and concentration
C) and the mesoscopic distribution functions (such as density dis-
tribution function f, temperature distribution function g and con-
centration distribution function h), they can be copied into GPU
memory space, and only copied back to CPU until the end of itera-
tions. This can be achieved by the data clauses including copy,
copyin, copyout, and create. Otherwise, at each iterative step, all
the data will be transferred between CPUs and GPUs by default,
which may consume more time than the computation itself.

To characterize the parallel performance of LB implementation,
we adopt the metrics of million lattice updates per second
(MLUPS), which is defined as

MLUPS ¼ meshsize� iterationsteps
runningtime� 106 ð20Þ

For a given mesh size, we fixed the iteration steps as 20,000, and
measure the running time. Less running time results in higher
MLUPS, which also means the better parallel performance. All the
simulations in the present work use double-precision floating point
arithmetic, which ensures the simulation accuracy.

Three benchmark problems, namely, lid driven cavity problem
[26,27], buoyancy driven cavity problem [28,29], and double diffu-
sive cavity problem [30,31] are adopted to investigate the parallel
computing performance of OpenACC based LB simulation involving
multiphysics processes. Fig. 2 shows the computing performance
of utilizing OpenACC with the programming effort mentioned



Fig. 2. Performance comparisons between CPU and basic OpenACC implementation.

Fig. 3. Schematic illustration of AoS and SoA data layout.

580 A. Xu et al. / International Journal of Heat and Mass Transfer 109 (2017) 577–588
above, and around 12–13 times speedup can be obtained compar-
ing with the original code running on CPU. It is interesting to notice
that the computing performance is much higher for the isothermal
fluid flow problem than that for the coupled fluid flow, heat and
mass transfer problem. This is because LB algorithm is memory
bandwidth limited algorithm, and the usage of more global arrays
to store distribution functions will appear as a limiting step. Specif-
ically, we need three distribution functions f ; g, and h to store the
information for flow field, temperature field, and concentration
field in the double diffusive cavity problem. In contrast, only one
distribution function f is needed in the lid driven cavity problem.
It should also be pointed out that, this is the most basic effort of
porting to GPU platform, and we can further boost the parallel
computing performance by applying the improvement strategies
mentioned in Sections 3.2, 3.3 and 3.4.
3.2. Optimize data layout

Usually, in CPU based LB implementation, the data layout of dis-
tribution function belongs to array of structure (AoS) because CPUs
can make use of cache memory. For example, the distribution func-
tion f i x; tð Þ is stored with index ðiþ 9� xþ 9� Nx� yÞ for the
D2Q9 lattice model, as illustrated in Fig. 3. However, as GPUs adopt
single instruction multiple threads (SIMT) execution model, the
data layout should be changed to structure of array (SoA) to meet
the requirement of coalescing memory access in OpenACC based
LB implementation. For the D2Q9 lattice model, the distribution
function f iðx; tÞ is then stored with index ðxþ Nx� yþ Nx�
Ny� iÞ, so that parallel threads running the same instruction can
access consecutive locations in memory. Using Fortran program-
ming language, this index formula implementation means chang-
ing array f ði; x; yÞ to array f ðx; y; iÞ; while the array f ½y�½x�½i� is
changed to array f ½i�½y�½x� using C programming language. Similar
index formula for the D3Q19 lattice model can be straightfor-
wardly obtained.
Fig. 4 compares the parallel performance of OpenACC acceler-
ated LB implementation adopting AoS and SoA data layout. A
speedup of 2.37–2.85X can be obtained after changing the data lay-
out, which also means around 29–38 times speedup can be
obtained comparing with the original code running on CPU. It is
encouraging to see the effort of optimizing data layout, which prac-
tically means just changing the index of an array for distribution
function and requires little programming effort, rewards nearly a
threefold increase in computing performance.

3.3. Minimize memory access frequency

Accessing data in the GPU memory space may take longer time
than the actual computations on these data. Thus, it is essential to
minimize the frequency of accesses to global memory. In LB
method, the frequency of global memory accesses can be reduced
by fusing the collision and streaming subroutines. Based on the
standard LB implementation described in Section 3.1, there is
one read-access and one write-access in each of the two subrouti-



Fig. 4. Performance comparisons between AoS and SoA data layout.

A. Xu et al. / International Journal of Heat and Mass Transfer 109 (2017) 577–588 581
nes to update the distribution function. An alternative implemen-
tation is fusing the collision and streaming subroutines, then only
one read-access and one write-access is needed in total. Specifi-
cally, at odd time steps, the distribution function f is read from
the memory and the post-collision distribution function f 0 is wrote
to the memory. At even time steps, the procedure is reversed. In
practical implementation, we suggest to follow the flow chat
shown in Fig. 5, which can avoid handling the algorithm flow con-
trol to distinguish odd or even iterations using if statement.

Fig. 6 compares the parallel performance between native two-
steps and fusion one-step implementations for the update of distri-
bution function. A speedup of 1.34–1.42X can be obtained after
reducing memory access frequency, which also means around
39–54 times speedup can be obtained comparing with the original
code running on CPU. One should keep in mind that the results in
Figs. 2, 4 and 6 represent an incremental improvement in the
Fig. 5. Schematic illustration of LB flow chat by fusing collision and streaming
subroutine.
implementation, and the left side of the bar in Figs. 4 and 6 are
the same as the right side of the bar in Figs. 2 and 4, respectively.

It is also interesting to notice from the above performance com-
parison that MLUPS is higher when the mesh size is above 10002,
as shown in Fig. 7 which consolidates the above-mentioned
improvement strategies. This is because there is extensive compu-
tational load with a larger mesh size and GPUs can hide latency
with intensive computations. In addition, the speedup for double
diffusive cavity problem degrades a little compared with that for
lid driven cavity problem, which is due to the increase of complex-
ity of the numerical algorithm.
3.4. Adjust the number of gangs and vector length

In addition to loop directive to parallelize computational inten-
sive loops, OpenACC execution model gives more detailed control
over three levels of parallelism via gang, worker, and vector clauses.
Gang parallelism is the highest level, and gangs work indepen-
dently of each other and may not synchronize; vector parallelism
has the finest granularity, indicating the data elements that oper-
ated on with the same instruction; worker parallelism sits between
gang and vector levels. To further boost the parallel performance of
the code based on OpenACC acceleration, the programmers may
specify the number of gangs and vector length to fit a target archi-
tecture. Since the present numerical tests are performed on NVI-
DIA� Tesla� K20c GPU accelerator, which prefers the number of
gangs and vector length to be a multiple of 32, Fig. 8 gives the par-
allel performance by varying the number of gangs between 27 and
211, and vector length between 27 and 210. Here, we tested five dif-
ferent mesh sizes with the same total computational loads, but
with different aspect ratios including 1:16, 1:4, 1:1, 4:1, and
16:1. Results show that an optimal choice for the number of gangs
equals 2048, and the vector length equals 1024; in addition, the
aspect ratio of the computational domain has minor effects on
the parallel performance.



Fig. 6. Performance comparisons between native two-steps and fusion one-step implementation.

Fig. 7. Correlation of speedup versus mesh size for three benchmark problems.

582 A. Xu et al. / International Journal of Heat and Mass Transfer 109 (2017) 577–588
As a summary, Table 1 gives the maximize parallel performance
of OpenACC accelerated LB algorithm implementations by adopt-
ing the above-mentioned improvements. The mesh size is
2048� 2048, and MLUPS for GPU implementations are chosen
after adjusting the number of gangs and vector length on NVIDIA�

Tesla� K20c accelerator. A speedup around 49–64 times can be
achieved compared with the serial implementations.
4. Numerical benchmark

4.1. Lid driven cavity problem

The flow domain is a unit square, with the top wall moving at a
constant velocity (U0), and the other three walls are stationary. The
dimensionless number characterize the system is the Reynolds
number (Re), which is defined as

Re ¼ U0L0
m

ð21Þ

where U0 is the characteristic velocity and L0 is the characteristic
length of the system. In this work, we provide results for steady
states with Re ¼ 5000 and 7500. The criterion for reaching steady
state is given byP

ikuðxi; t þ 2000dtÞ � uðxi; tÞk2P
ikuðxi; tÞk2

< 10�9 ð22Þ

where kuk2 denotes L2 norm of u. The characteristic velocity is cho-
sen as U0 ¼ 0:1. Fig. 9 shows stream-function, vorticity and pressure
fields obtained on grid 20492, which qualitatively agrees with pre-
vious study. We also provide benchmark results on the extreme of
stream-function (jwjmax), and the vorticity (jxj) at the same position
for both the primary vortex and the lower-right secondary vortex,
as shown in Table 2. Existing data from Ghia et al. [26] using
vorticity-stream function formulation together with coupled
strongly implicit multigrid method; Bruneau et al. [27] using finite
differences discretization and on a multigrid solver with a cell-by-
cell relaxation procedure; and Zhu et al. [32] using discrete unified
gas kinetic scheme are also provided as comparison. In addition, the
asymptotic values f1 are used as the reference values to compute
the relative error, which are then used to estimate the order of accu-
racy n for LB simulation.

It should be noted that there are controversy results on the Rey-
nolds number when the first Hopf bifurcation occurs: Ghia et al.
[26] provided steady results up to Re ¼ 10;000, while Bruneau
et al. [27] obtained the first Hopf bifurcation at Reynolds number
close to Re ¼ 8000. Our data shows at Re = 10,000 the solution can-
not converge to steady states, thus, steady solution of Reynolds
number up to Re ¼ 7500 are provided as benchmark. It is also
worth mentioning that the simulation accuracy can be further



Fig. 8. Performance comparisons between various number of gangs and vector length. Five different mesh sizes are tested: red circles represent mesh size 512� 8192; yellow
circles represent mesh size 1024� 4096; blue circles represent mesh size 2048� 2048; green circles represent mesh size 4096� 1024; black circles represent mesh size
8192� 512. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)

Table 1
Performance comparison between CPU and GPU based LB algorithm implementation.

CPU (MLUPS) GPU (MLUPS) Speedup

Lid driven cavity problem 7.6 488.7 64X
Buoyancy driven cavity problem 5.3 282.6 53X
Double diffusive cavity problem 4.3 210.8 49X

A. Xu et al. / International Journal of Heat and Mass Transfer 109 (2017) 577–588 583
improved by adopting adaptive mesh refinement method [33,34],
however, using non-uniform meshes may spoil the parallel effi-
Fig. 9. From left to right: steady solution of stream-functi
ciency of LB algorithm and the trade-offs deserve further
investigations.
4.2. Buoyancy driven cavity problem

The flow domain is a unit square, with left and right vertical
walls maintained at a constant high temperature and low temper-
ature, respectively; and the top and bottom horizontal walls are
adiabatic. All four walls are stationary. The dimensionless numbers
on, vorticity and pressure fields on grid 2049� 2049.



Table 2
Benchmark solutions of the primary vortex and lower-right secondary vortex.

Re Ref. Grid jwjmax jxj jwjmax � 103 jxj

5000 Ghia [26] 2572 0.118966 1.86016 3.08358 2.66354

Bruneau [27] 20482 0.12197 1.9327 3.0706 2.7244

Zhu [32] 5122 0.122387 1.945667 3.090044 2.777576

Present 5132 0.119942 1.90664 3.00970 2.66394

Present 10252 0.121113 1.92401 3.04203 2.73440

Present 20492 0.121676 1.93239 3.05795 2.74009

1 0.121864 1.93519 3.06327 2.74199
n 1.68 1.68 1.67 2.68

7500 Ghia [26] 2572 0.119976 1.87987 3.28484 3.49312

Present 5132 0.119562 1.88478 3.15172 3.15388

Present 10252 0.121023 1.90645 3.19014 3.21385

Present 20492 0.121715 1.91682 3.20898 3.22024

1 0.121946 1.92028 3.21527 3.22237
n 1.69 1.68 1.67 2.50

584 A. Xu et al. / International Journal of Heat and Mass Transfer 109 (2017) 577–588
characterize the system is the thermal Rayleigh number (RaT) and
Prandtl number (Pr), which are defined as

RaT ¼ gbTDTL
3
0

mj
; Pr ¼ m

j
ð23Þ

where L0 is the characteristic length of the system. In this work, we
provide results for steady states with RaT ¼ 107, and 108. The
Prandtl number is fixed as Pr ¼ 0:71. The criterion for reaching
steady state is given byP

ikuðxi; t þ 2000dtÞ � uðxi; tÞk2P
ikuðxi; tÞk2

< 10�9;P
ijTðxi; t þ 2000dtÞ � Tðxi; tÞjP

ijTðxi; tÞj
< 10�7

ð24Þ

where kuk2 denotes L2 norm of u. Fig. 10 shows stream-function,

temperature and vorticity fields obtained on grid 20492, which
qualitatively agrees with previous study.

We also provide benchmark results on the stream-function at
the cavity center jwjmid, the maximum horizontal velocity umax
Fig. 10. From left to right: steady solution of stream-functio
and its position y along the vertical mid-plane, the maximum ver-
tical velocity vmax and its position x along the horizontal mid-
plane, as shown in Table 3. Existing data from Quéré [28] using
pseudo-spectral Chebyshev algorithm; and Contrino et al. [29]
using multiple-relaxation-time LB method are also provided as
comparison.

In addition to the benchmark result for hydrodynamic intensi-
ties, we also provide benchmark results for Nusselt numbers,
including the volume average Nusselt number hNui, the average
Nusselt number along the hot wall Nu0, the average Nusselt num-
ber along the vertical mid-plane Nu1=2, the maximum local Nusselt
number along the hot wall Numax and its location y, and the mini-
mum local Nusselt number along the hot wall Numin, as shown in
Table 4.
4.3. Double diffusive cavity problem

The flow domain is a unit square, with left vertical walls main-
tained at a constant high temperature and low concentration; and
right vertical walls maintained at a constant low temperature and
n, temperature and vorticity fields on grid 2049� 2049.



Table 3
Benchmark solutions of the hydrodynamic intensities.

RaT Ref. Grid jwjmid umax y vmax x

107 Quéré [28] 1282 29.3617 148.5954 0.879 699.1795 0.021

Contrino [29] 20432 29.3653 148.5852 0.8793 699.3224 0.0213

Present 5132 29.37105 148.31041 0.88012 698.70233 0.02047

Present 10252 29.36462 148.52300 0.87951 699.25729 0.02098

Present 20492 29.36267 148.57189 0.87921 699.33944 0.02123

1 29.36202 148.58821 0.87911 699.36685 0.02131
n 1.90 2.05 1.67 2.30 1.67

108 Quéré [28] 1282 52.32 321.9 0.928 2222. 0.012

Contrino [29] 20432 52.3508 321.9063 0.9279 2222.3279 0.0120

Present 5132 52.37456 310.43507 0.91910 2219.03321 0.01267

Present 10252 52.33688 318.34510 0.92634 2222.31042 0.01220

Present 20492 52.32652 320.98831 0.92753 2223.46603 0.01196

1 52.32306 321.87064 0.92793 2223.85179 0.01188
n 1.95 1.85 2.24 1.82 1.65

Table 4
Benchmark solutions of the Nusselt numbers.

RaT Ref. Grid hNui Nu0 Nu1=2 Numax Numin

107 Quéré [28] 1282 – 16.523 16.523 39.39 1.366

Contrino [29] 20432 16.5231 16.5230 16.5231 39.3950 1.3659

Present 5132 16.53658 16.53243 16.53766 39.91395 1.39477

Present 10252 16.52673 16.52345 16.52710 39.48729 1.37206

Present 20492 16.52414 16.52229 16.52428 39.40215 1.36731

1 16.52328 16.52190 16.52334 39.37374 1.36572
n 1.97 2.39 1.97 2.13 2.10

108 Quéré [28] 1282 – 30.225 30.225 87.24 1.919

Contrino [29] 20432 30.2251 30.2241 30.2251 87.2454 1.9195

Present 5132 30.30100 30.31372 30.30588 93.88534 2.12199

Present 10252 30.24443 30.24051 30.24571 88.61612 1.97001

Present 20492 30.23013 30.22650 30.23050 87.49182 1.93027

1 30.22536 30.22183 30.22542 87.11660 1.91701
n 1.99 2.15 1.99 2.09 1.98

A. Xu et al. / International Journal of Heat and Mass Transfer 109 (2017) 577–588 585
high concentration; and the top and bottom horizontal walls are
adiabatic and impenetrable. All four walls are stationary. The
dimensionless numbers characterize the system is the thermal
Rayleigh number (RaT), solute Rayleigh number (Ras), Prandtl num-
ber (Pr), and Lewis number (Le), which are defined as

RaT ¼ gbTDTL
3
0

mj
; Ras ¼ gbsDCL

3
0

mD
; Pr ¼ m

j
; Le ¼ j

D
ð25Þ

where L0 is the characteristic length of the system. In this work, we
provide results for steady states with Ras ¼ 5� 106;5� 107, and 108

for RaT ¼ 107; Ras ¼ 5� 107 and 2� 108 for RaT ¼ 108. The Prandtl
number is fixed as Pr ¼ 0:71, and the Lewis number is fixed as
Le ¼ 1. The criterion for reaching steady state is given byP

ikuðxi; t þ 2000dtÞ � uðxi; tÞk2P
ikuðxi; tÞk2

< 10�9;P
ijTðxi; t þ 2000dtÞ � Tðxi; tÞjP

ijTðxi; tÞj
< 10�7;P

ijCðxi; t þ 2000dtÞ � Cðxi; tÞjP
ijCðxi; tÞj

< 10�7

ð26Þ

where kuk2 denotes L2 norm of u. Figs. 11 and 12 shows stream-
function, temperature and concentration fields obtained on grid
20492 for RaT ¼ 107 and RaT ¼ 108, respectively.

We also provide benchmark results for Sherwood numbers,
including the volume average Sherwood number hShi, the average
Sherwood number along the low concentration wall Sh0, the aver-
age Sherwood number along the vertical mid-plane Sh1=2, the max-
imum local Sherwood number along the low concentration wall
Shmax, and the minimum local Sherwood number along the low
concentration wall Shmin, as shown in Tables 5 and 6. Existing data
from Beghein et al. [30] using finite volume method with SIMPLER
algorithm; and Hu et al. [31] using lattice Boltzmann flux scheme
are also provided as a comparison. It is worth mentioning that pre-
vious benchmark results on the double diffusive cavity problem is
quite limited, e.g., only the average Sherwood number along the
low concentration wall Sh0 is available; and there is no results
are available for RaT up to 108. The present quantitative results will
certainly enrich our knowledge on the double diffusive cavity
problem, and we encourage follow up works to provide validation
using other advanced numerical techniques.
5. Conclusion

In this work, we have presented improved implementation of
OpenACC to accelerate LB simulations involving fluid flow, heat
and mass transfer. The results demonstrate that using OpenACC
allows a speed up around 50–60 times for multiphysics LB simula-
tion. The applications of OpenACC accelerated LB simulation to
two-dimensional lid driven cavity problem, buoyancy driven cav-
ity problem, and double diffusive cavity problem using fine grid
provide benchmark quality results. The extensions to much more
memory consuming three-dimensional implementation will be
pursued in future work.



Fig. 11. From left to right: steady solution of stream-function, temperature and concentration fields on grid 2049� 2049 (RaT ¼ 107).

Fig. 12. From left to right: steady solution of stream-function, temperature and concentration fields on grid 2049� 2049 (RaT ¼ 108).

586 A. Xu et al. / International Journal of Heat and Mass Transfer 109 (2017) 577–588



Table 5
Benchmark solutions of the Sherwood numbers (RaT ¼ 107).

Ras Ref Grid hShi Sh0 Sh1=2 Shmax Shmin

5� 106 Beghein [30] 452 – �13.6 – – –

Hu [31] 2002 – �13.64 – – –

Present 5132 �13.72797 �13.72392 �13.72898 �1.23026 �30.92539

Present 10252 �13.72223 �13.71955 �13.72258 �1.23235 �30.89116

Present 20492 �13.72068 �13.71922 �13.72082 �1.23314 �30.89247

1 �13.72016 �13.71911 �13.72023 �1.23340 �30.89291
n 1.96 2.73 1.95 1.79 3.10

5� 107 Beghein [30] 452 – �23.7 – – –

Hu [31] 2002 – �23.85 – – –

Present 5132 �23.85876 �23.85898 �23.86024 �1.66060 �64.37414

Present 10252 �23.83032 �23.82603 �23.83076 �1.67243 �63.75814

Present 20492 �23.82303 �23.82018 �23.82318 �1.67586 �63.64995

1 �23.82060 �23.81823 �23.82065 �1.67701 �63.61385
n 1.99 2.19 1.99 1.92 2.20

108 Present 5132 �29.48261 �29.49357 �29.48709 �1.86018 �85.86658

Present 10252 �29.43027 �29.42622 �29.43143 �1.88097 �84.43427

Present 20492 �29.41701 �29.41348 �29.41735 �1.88674 �84.15782

1 �29.41258 �29.40923 �29.41265 �1.88867 �84.06556
n 1.99 2.16 1.99 1.95 2.15

Table 6
Benchmark solutions of the Sherwood numbers (RaT ¼ 108).

Ras Ref Grid hShi Sh0 Sh1=2 Shmax Shmin

5� 107 Present 5132 �25.29378 �25.29600 �25.29527 �1.71943 �69.42192

Present 10252 �25.26009 �25.25574 �25.26062 �1.72925 �68.82583

Present 20492 �25.25149 �25.24842 �25.25167 �1.73218 �68.72866

1 �25.24862 �25.24598 �25.24868 �1.73316 �68.69624
n 1.99 2.18 1.98 1.91 2.24

2� 108 Present 5132 �30.30208 �30.31536 �30.30706 �1.88324 �89.30962

Present 10252 �30.24448 �30.24056 �30.24577 �1.90870 �87.60812

Present 20492 �30.23013 �30.22653 �30.23050 �1.91558 �87.25699

1 �30.22534 �30.22185 �30.22540 �1.91788 �87.13981
n 2.00 2.16 2.00 1.96 2.11

A. Xu et al. / International Journal of Heat and Mass Transfer 109 (2017) 577–588 587
Acknowledgements

The authors thank Professor Wei Shyy for his useful discussion.
The work described in this paper was fully supported by a grant
from the Research Grants Council of the Hong Kong Special Admin-
istrative Region, China (Project No. 623313).

Appendix A. D2Qn lattice model

A.1. D2Q9 lattice model

For the two-dimensional D2Q9 lattice model, ei can be given as

e0; e1; e2; e3; e4; e5; e6; e7; e8½ � ¼ c
0 1 �1 0 0 1 �1 �1 1
0 0 0 1 �1 1 1 �1 �1

� �
ð27Þ

M is a 9� 9 orthogonal transformation matrix given by [35]
M ¼

1 1 1 1 1 1 1 1 1
�4 �1 �1 �1 �1 2 2 2 2
4 �2 �2 �2 �2 1 1 1 1
0 1 0 �1 0 1 �1 �1 1
0 �2 0 2 0 1 �1 �1 1
0 0 1 0 �1 1 1 �1 �1
0 0 �2 0 2 1 1 �1 �1
0 1 �1 1 �1 0 0 0 0
0 0 0 0 0 1 �1 1 �1

2
66666666666666664

3
77777777777777775

ð28Þ
A.2. D2Q5 lattice model

For the two-dimensional D2Q5 lattice model, ei can be given as

e0; e1; e2; e3; e4½ � ¼ c
0 1 �1 0 0
0 0 0 1 �1

� �
ð29Þ

N is a 5� 5 orthogonal transformation matrix given by [36]



588 A. Xu et al. / International Journal of Heat and Mass Transfer 109 (2017) 577–588
N ¼

1 1 1 1 1
0 1 0 �1 0
0 0 1 0 �1
�4 1 1 1 1
0 1 �1 1 �1

2
6666664

3
7777775

ð30Þ
Appendix B. Dimensional scaling

B.1. Nondimensionalization model for fluid flow

With the scalings

x=L0 ! x�; t
L0
U0

� �
! t�

	
; u=U0 ! u�;

p
q0U

2
0

L30

 !
! p�

,
; q

q0

L30

 !
! q�

, ð31Þ

then, Eqs. (1a) and (1b) can be rewritten in dimensionless form as

r � u� ¼ 0 ð32aÞ
@u�

@t�
þ u� � ru� ¼ �rp� þ 1

Re
r2u� ð32bÞ
B.2. Nondimensionalization model for fluid flow and heat transfer

With the scalings

x=L0 ! x�; t
L20
j

 !
! t�

,
; u

j
L0

� �
! u�

	
;

p
q0j2

L20

 !
! p�

,
; T � T0ð Þ=DT ! T�

ð33Þ

then, Eqs. 6a, 6b and 6c can be rewritten in dimensionless form as

r � u� ¼ 0 ð34aÞ
@u�

@t�
þ u� � ru� ¼ �rp� þ Prr2u� þ RaTPrT

�~y ð34bÞ
@T�

@t�
þ u� � rT� ¼ r2T� ð34cÞ
B.3. Nondimensionalization model for fluid flow, heat transfer and
mass transfer

With the scalings

x=L0 !x�; t
L20
j

 !
! t�

,
; u

j
L0

� �
!u�

	
; p

q0j2

L20

 !
! p�

,
;

T�T0ð Þ=DT! T�; C�C0ð Þ=DC!C�

ð35Þ
then, Eqs. (15a)–(15c) and (15d) can be rewritten in dimensionless
form as

r � u� ¼ 0 ð36aÞ
@u�

@t�
þ u� � ru� ¼ �rp� þ Prr2u� þ RaTPrT

�~y þ Ras
Pr
Le

C�~y ð36bÞ
@T�

@t�
þ u� � rT� ¼ r2T� ð36cÞ

@C�

@t�
þ u� � rC� ¼ 1

Le
r2C� ð36dÞ
References

[1] K. Mattila, T. Puurtinen, J. Hyväluoma, R. Surmas, M. Myllys, T. Turpeinen, F.
Robertsen, J. Westerholm, J. Timonen, J. Comput. Sci. 12 (2016) 62–76, http://
dx.doi.org/10.1016/j.jocs.2015.11.013.

[2] M.M. Waldrop, Nature News 530 (2016) 144, http://dx.doi.org/10.1038/
530144a.

[3] P. Cheng, X. Quan, S. Gong, X. Liu, L. Yang, Adv. Heat Transfer 46 (2014) 187–
248, http://dx.doi.org/10.1016/bs.aiht.2014.08.004.

[4] Q. Li, K. Luo, X. Li, Phys. Rev. E 87 (2013) 053301, http://dx.doi.org/10.1103/
PhysRevE.87.053301.

[5] A. Xu, T. Zhao, L. An, L. Shi, Int. J. Heat Fluid Flow 56 (2015) 261–271, http://dx.
doi.org/10.1016/j.ijheatfluidflow.2015.08.001.

[6] Q. Li, K. Luo, Q. Kang, Y. He, Q. Chen, Q. Liu, Prog. Energy Combust. Sci. 52
(2016) 62–105, http://dx.doi.org/10.1016/j.pecs.2015.10.001.

[7] H. Huang, X. Yang, M. Krafczyk, X.-Y. Lu, J. Fluid Mech. 692 (2012) 369–394,
http://dx.doi.org/10.1017/jfm.2011.519.

[8] H. Huang, X. Yang, X.-Y. Lu, Phys. Fluids (1994-present) 26 (2014) 053302,
http://dx.doi.org/10.1063/1.4874606.

[9] X. Yang, H. Huang, X. Lu, Phys. Rev. E 92 (2015) 063009, http://dx.doi.org/
10.1103/PhysRevE.92.063009.

[10] A. Xu, T. Zhao, L. Shi, X. Yan, Int. J. Heat Fluid Flow 62 (2016) 560–567, http://
dx.doi.org/10.1016/j.ijheatfluidflow.2016.08.001.

[11] Z. Chai, B. Shi, J. Lu, Z. Guo, Comput. Fluids 39 (2010) 2069–2077, http://dx.doi.
org/10.1016/j.compfluid.2010.07.012.

[12] Z. Chai, C. Huang, B. Shi, Z. Guo, Int. J. Heat Mass Transf. 98 (2016) 687–696,
http://dx.doi.org/10.1016/j.ijheatmasstransfer.2016.03.065.

[13] W.-Z. Fang, L. Chen, J.-J. Gou, W.-Q. Tao, Int. J. Heat Mass Transf. 92 (2016)
120–130, http://dx.doi.org/10.1016/j.ijheatmasstransfer.2015.08.071.

[14] J. Tölke, M. Krafczyk, Int. J. Comput. Fluid Dynam. 22 (2008) 443–456, http://
dx.doi.org/10.1080/10618560802238275.

[15] N. Delbosc, J.L. Summers, A. Khan, N. Kapur, C.J. Noakes, Comput. Math. Appl.
67 (2014) 462–475, http://dx.doi.org/10.1016/j.camwa.2013.10.002.

[16] L.-S. Lin, H.-W. Chang, C.-A. Lin, Comput. Fluids 80 (2013) 381–387, http://dx.
doi.org/10.1016/j.compfluid.2012.01.018.

[17] H.-W. Chang, P.-Y. Hong, L.-S. Lin, C.-A. Lin, Comput. Fluids 88 (2013) 866–871,
http://dx.doi.org/10.1016/j.compfluid.2013.08.019.

[18] C. Huang, B. Shi, N. He, Z. Chai, Adv. Appl. Math. Mech. 7 (2015) 1–12, http://
dx.doi.org/10.4208/aamm.2014.m468.

[19] C. Huang, B. Shi, Z. Guo, Z. Chai, Commun. Comput. Phys. 17 (2015) 960–974,
http://dx.doi.org/10.4208/cicp.2014.m342.

[20] M. Januszewski, M. Kostur, Comput. Phys. Commun. 185 (2014) 2350–2368,
http://dx.doi.org/10.1016/j.cpc.2014.04.018.

[21] E. Calore, J. Kraus, S.F. Schifano, R. Tripiccione, in: European Conference on
Parallel Processing, Springer, pp. 613–624. http://dx.doi.org/10.1007/978-3-
662-48096-0_47.

[22] L.-S. Luo, W. Liao, X. Chen, Y. Peng, W. Zhang, et al., Phys. Rev. E 83 (2011)
056710, http://dx.doi.org/10.1103/PhysRevE.83.056710.

[23] B.-F. Wang, D.-J. Ma, C. Chen, D.-J. Sun, J. Fluid Mech. 711 (2012) 27, http://dx.
doi.org/10.1017/jfm.2012.360.

[24] S.-N. Xia, Z.-H. Wan, S. Liu, Q. Wang, D.-J. Sun, J. Fluid Mech. 798 (2016) 628–
642, http://dx.doi.org/10.1017/jfm.2016.338.

[25] W. Shyy, M.-H. Chen, Phys. Fluids A: Fluid Dynam. (1989–1993) 3 (1991)
2592–2607, http://dx.doi.org/10.1063/1.858200.

[26] U. Ghia, K.N. Ghia, C. Shin, J. Comput. Phys. 48 (1982) 387–411, http://dx.doi.
org/10.1016/0021-9991(82)90058-4.

[27] C.-H. Bruneau, M. Saad, Comput. Fluids 35 (2006) 326–348, http://dx.doi.org/
10.1016/j.compfluid.2004.12.004.

[28] P. Le Quéré, Comput. Fluids 20 (1991) 29–41, http://dx.doi.org/10.1016/0045-
7930(91)90025-D.

[29] D. Contrino, P. Lallemand, P. Asinari, L.-S. Luo, J. Comput. Phys. 275 (2014)
257–272, http://dx.doi.org/10.1016/j.jcp.2014.06.047.

[30] C. Beghein, F. Haghighat, F. Allard, Int. J. Heat Mass Transf. 35 (1992) 833–846,
http://dx.doi.org/10.1016/0017-9310(92)90251-M.

[31] Y. Hu, D. Li, S. Shu, X. Niu, Comput. Math. Appl. 72 (2016) 48–63, http://dx.doi.
org/10.1016/j.camwa.2016.04.032.

[32] L. Zhu, P. Wang, Z. Guo, J. Comput. Phys. 333 (2017) 227–246, http://dx.doi.
org/10.1016/j.jcp.2016.11.051.

[33] C.-K. Kuan, J. Sim, W. Shyy, Acta. Mech. Sin. 28 (2012) 999–1021, http://dx.doi.
org/10.1007/s10409-012-0126-3.

[34] C.-K. Kuan, K.-L. Pan, W. Shyy, J. Fluid Mech. 759 (2014) 104–133, http://dx.
doi.org/10.1017/jfm.2014.558.

[35] P. Lallemand, L.-S. Luo, Phys. Rev. E 61 (2000) 6546, http://dx.doi.org/10.1103/
PhysRevE.61.6546.

[36] J. Wang, D. Wang, P. Lallemand, L.-S. Luo, Comput. Math. Appl. 65 (2013) 262–
286, http://dx.doi.org/10.1016/j.camwa.2012.07.001.

http://dx.doi.org/10.1016/j.jocs.2015.11.013
http://dx.doi.org/10.1016/j.jocs.2015.11.013
http://dx.doi.org/10.1038/530144a
http://dx.doi.org/10.1038/530144a
http://dx.doi.org/10.1016/bs.aiht.2014.08.004
http://dx.doi.org/10.1103/PhysRevE.87.053301
http://dx.doi.org/10.1103/PhysRevE.87.053301
http://dx.doi.org/10.1016/j.ijheatfluidflow.2015.08.001
http://dx.doi.org/10.1016/j.ijheatfluidflow.2015.08.001
http://dx.doi.org/10.1016/j.pecs.2015.10.001
http://dx.doi.org/10.1017/jfm.2011.519
http://dx.doi.org/10.1063/1.4874606
http://dx.doi.org/10.1103/PhysRevE.92.063009
http://dx.doi.org/10.1103/PhysRevE.92.063009
http://dx.doi.org/10.1016/j.ijheatfluidflow.2016.08.001
http://dx.doi.org/10.1016/j.ijheatfluidflow.2016.08.001
http://dx.doi.org/10.1016/j.compfluid.2010.07.012
http://dx.doi.org/10.1016/j.compfluid.2010.07.012
http://dx.doi.org/10.1016/j.ijheatmasstransfer.2016.03.065
http://dx.doi.org/10.1016/j.ijheatmasstransfer.2015.08.071
http://dx.doi.org/10.1080/10618560802238275
http://dx.doi.org/10.1080/10618560802238275
http://dx.doi.org/10.1016/j.camwa.2013.10.002
http://dx.doi.org/10.1016/j.compfluid.2012.01.018
http://dx.doi.org/10.1016/j.compfluid.2012.01.018
http://dx.doi.org/10.1016/j.compfluid.2013.08.019
http://dx.doi.org/10.4208/aamm.2014.m468
http://dx.doi.org/10.4208/aamm.2014.m468
http://dx.doi.org/10.4208/cicp.2014.m342
http://dx.doi.org/10.1016/j.cpc.2014.04.018
http://dx.doi.org/10.1007/978-3-662-48096-0_47
http://dx.doi.org/10.1007/978-3-662-48096-0_47
http://dx.doi.org/10.1103/PhysRevE.83.056710
http://dx.doi.org/10.1017/jfm.2012.360
http://dx.doi.org/10.1017/jfm.2012.360
http://dx.doi.org/10.1017/jfm.2016.338
http://dx.doi.org/10.1063/1.858200
http://dx.doi.org/10.1016/0021-9991(82)90058-4
http://dx.doi.org/10.1016/0021-9991(82)90058-4
http://dx.doi.org/10.1016/j.compfluid.2004.12.004
http://dx.doi.org/10.1016/j.compfluid.2004.12.004
http://dx.doi.org/10.1016/0045-7930(91)90025-D
http://dx.doi.org/10.1016/0045-7930(91)90025-D
http://dx.doi.org/10.1016/j.jcp.2014.06.047
http://dx.doi.org/10.1016/0017-9310(92)90251-M
http://dx.doi.org/10.1016/j.camwa.2016.04.032
http://dx.doi.org/10.1016/j.camwa.2016.04.032
http://dx.doi.org/10.1016/j.jcp.2016.11.051
http://dx.doi.org/10.1016/j.jcp.2016.11.051
http://dx.doi.org/10.1007/s10409-012-0126-3
http://dx.doi.org/10.1007/s10409-012-0126-3
http://dx.doi.org/10.1017/jfm.2014.558
http://dx.doi.org/10.1017/jfm.2014.558
http://dx.doi.org/10.1103/PhysRevE.61.6546
http://dx.doi.org/10.1103/PhysRevE.61.6546
http://dx.doi.org/10.1016/j.camwa.2012.07.001

	Accelerated lattice Boltzmann simulation using GPU and OpenACC with data management
	1 Introduction
	2 Numerical method
	2.1 LB model for fluid flow
	2.2 LB model for fluid flow and heat transfer
	2.3 LB model for fluid flow, heat transfer and mass transfer

	3 OpenACC implementation and optimization
	3.1 GPU programming using OpenACC
	3.2 Optimize data layout
	3.3 Minimize memory access frequency
	3.4 Adjust the number of gangs and vector length

	4 Numerical benchmark
	4.1 Lid driven cavity problem
	4.2 Buoyancy driven cavity problem
	4.3 Double diffusive cavity problem

	5 Conclusion
	Acknowledgements
	Appendix A D2Qn lattice model
	A.1 D2Q9 lattice model
	A.2 D2Q5 lattice model

	Appendix B Dimensional scaling
	B.1 Nondimensionalization model for fluid flow
	B.2 Nondimensionalization model for fluid flow and heat transfer
	B.3 Nondimensionalization model for fluid flow, heat transfer and mass transfer

	References


