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In this paper, we present a three-dimensional lattice Boltzmann (LB) model to simulate suspensions that 

contain both micro- and nanoparticles. The microparticle dynamics is explicitly resolved by tracking in- 

dividual solid particles, whilst the nanoparticles and base fluid are implicitly described as continua. The 

application of the LB model to simulate a micro spherical particle sedimentation in a microchannel and 

migration in a microtube filled with nanofluids show that the model allows the analysis of important 

parameters, including nanoparticle volume fraction, nanoparticle diameter, microchannel and microtube 

size. Finally, the model is applied to simulate particles in Couette flow. Through direct calculations of vis- 

cous dissipation, a mathematical correlation for viscosity as a function of micro- and nanoparticle volume 

fraction is proposed for the dilute suspension system. 

© 2016 Elsevier Inc. All rights reserved. 
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1. Introduction 

Suspended particles in fluid flows are ubiquitous in nature and

play an important role in industries including mechanical engi-

neering, chemical engineering, and biological engineering ( Van der

Hoef et al., 2008; Tenneti and Subramaniam, 2014 ). For example,

to increase the energy density and volumetric capacity of redox

flow batteries, one approach is to utilize the suspension electrode,

which is composed of charge storing active materials, conductive

additives, and an ion conducting electrolyte solution ( Hatzell et al.,

2015 ). The charge storing active materials are composed of par-

ticles with tens to hundreds of micrometers in diameter, while

the conductive additives are particles with diameters ranging from

tens to hundreds of nanometers. It is desirable to maximize the

flows of all suspended particles at a minimum external pump

power, thus, a thorough understanding of the hydrodynamics ef-

fect in a confined suspension is essential. 

A number of studies have been conducted to gain an under-

standing of the particle transport mechanism. Feng et al. (1994a );

1994b ) performed a particle-resolved simulation of circular parti-

cles settling in a two-dimensional channel flow where they iden-

tified Magnus lift, Saffman lift, and wall repulsion to be the dom-

inant forces that propel particle migration. Dependence of parti-

cle migration trajectories on the particle Reynolds number was re-
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orted. Similarly, Jebakumar et al. (2016) reported the Stokes num-

er effect on circular particle trajectories in a wall-bounded flow.

n addition to spherical particles, Huang et al. (2012a ); 2012b );

014 ); Yang et al. (2015) simulated ellipsoid particles and inves-

igated several rotational modes. To save the computational cost,

ang and Guo (2016) described the nanoparticle as a mass point

o investigate its influence on binary fluid displacement; Zarghami

t al. (2013) used two-fluid model to investigate flow and heat

ransfer in suspensions containing nanoparticles. In spite of exten-

ive effort s, the underst anding of particle transportation in con-

ned suspension systems where particle diameters range from

ozens of nanometers to hundreds of micrometers has yet to be

omprehensive due to the multiple spatial scales. 

Numerical approaches for studying suspensions are generally

lassified into three categories based on the levels of detail and

ccuracy required ( Van der Hoef et al., 2008; Tenneti and Sub-

amaniam, 2014 ). The first category is two-fluid approach, i.e.,

oth solid and fluid phases are described as interpenetrating con-

inua. The second category is point-particle approach, namely,

he solid particle is treated as a discrete mass point and the

uid phase is considered as a continuum. In the point-particle

pproach, the drag closure is used for fluid-solid coupling. The

hird category is particle-resolved approach, i.e., fluid flow is

olved by imposing appropriate boundary conditions at the par-

icle surfaces, while the velocities and positions of the particles

re determined by explicitly computing the fluid forces acting on

he particles. The particle-resolved approach include the a rbitrary

agrangian–Eulerian (ALE) method Feng et al. (1994a; 1994b) ,

http://dx.doi.org/10.1016/j.ijheatfluidflow.2016.08.001
http://www.ScienceDirect.com
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mmersed boundary (IB) method ( Peskin, 1977 ), fictitious domain

FD) method ( Glowinski et al., 2001 ), and lattice Boltzmann (LB)

ethod ( Ladd, 1994 ). Among these methods, the LB method has

eceived much attention, primarily because the fluid-solid interface

an be easily implemented in the regular Cartesian grids, thereby

mproving the computational efficiency for moving particle simula-

ions. Specifically, the no-slip boundary condition can be achieved

y modifications on the density distribution function encounter-

ng the surface. While the particle-resolved simulation is based on

rst-principle, the computational cost limits the suspension system

hat can be simulated. Thus, there is a trade-off between computa-

ional effort s and resolving down to a fine spatial and time scale. 

In this work, we simulate a suspension that contains both

icro- and nanoparticles by explicitly resolving microparticle dy-

amics and implicitly describing nanoparticles with base fluid

s continua. The rest of the paper is organized as follows:

n Section 2 , we first present the three-dimensional multiple-

elaxation-time LB model for simulating nanofluids, followed by

article-resolved LB model for simulating microparticle suspension.

n Section 3 , the present LB model is evaluated by verifying spheri-

al sedimentation in a channel and migration in a tube. After that,

umerical simulations are carried out to study microparticle mo-

ions in nanofluids, including the effects of nanoparticle volume

raction, nanoparticle diameter, and microparticle diameter to mi-

rochannel width ratio. Then, simulations are performed to study

he viscous dissipation of particles in Couette flow. Based on the

imulation data, a mathematical correlation for viscosity as a func-

ion of micro- and nanoparticle volume fraction is proposed for the

ilute suspension system. 

. Numerical method 

.1. Single-phase method for nanoparticle suspension 

.1.1. The multiple-relaxation-time LB model 

In single-phase method for nanofluids, the base fluid and the

anoparticles are assumed to be in equilibrium state. The influ-

nces of nanoparticles are reflected by changing physical proper-

ies of the mixture. The governing equation for nanofluids can be

ritten as 

 · u = 0 (1) 

∂u 

∂t 
+ u · ∇u = − 1 

ρnf 

∇P + νnf ∇ 

2 u (2)

here ρnf and νnf are the density and kinematic viscosity of

anofluids. 

The evolution equation of LB model for fluid flow is written as

f i (x + e i δt , t + δt ) − f i (x , t) = �i (3)

here f i is the density distribution function, t is the time, x is the

uid parcel position, e i is the discrete velocity along the i th di-

ection, δt is the time step, and �i is the collision operator which

an be expressed by either Bhatnagar–Gross–Krook (BGK) collision

perator ( Qian et al., 1992 ) or multiple-relaxation-time (MRT) colli-

ion operator ( d’Humiéres, 2002; Lallemand and Luo, 20 0 0 ). In this

[
e 0 , e 1 , e 2 , e 3 , e 4 , e 5 , e 6 , e 7 , e 8 , e 9 , e 10 , e 11 , e 12 , e 13 , e 14 , e 15 , e 16 , e

= c 

⎡ 

⎢ ⎣ 

0 1 −1 0 0 0 0 1 −1 1 −1
0 0 0 1 −1 0 0 1 1 −1 −1
0 0 0 0 0 1 −1 0 0 0 0
0

ork, we adopt the MRT collision operator for its superior numeri-

al stability over BGK collision operator. The MRT collision operator

i is defined as 

i = −(M 

−1 SM ) i j 

[
f j (x , t) − f eq 

j 
(x , t)] (4)

For the three-dimensional D3Q19 lattice model, e i can be given

s 

8 

]
 −1 1 −1 0 0 0 0 

 0 0 0 1 −1 1 −1 

 1 −1 −1 1 1 −1 −1 

⎤ 

⎥ ⎦ 

(5) 

here c = δx /δt is lattice constant, and c = 1 is adopted in this

ork. M is a 19 × 19 orthogonal transformation matrix given

y d’Humiéres d’Humiéres (2002) . The relaxation matrix S =
iag (0 , s e , s ε , 0 , s q , 0 , s q , 0 , s q , s ν , s π , s ν , s π , s ν , s ν , s ν , s t , s t , s t ) , where

he relaxation parameters are given as s e = 1 . 19 , s ε = s π = 1 . 4 ,

 q = 1 . 2 , s t = 1 . 98 , and s ν is determined by the kinematic viscosity

f nanofluids. 

The density distribution function f i and its equilibrium distri-

ution f 
eq 
i 

can be projected onto moment space via m = Mf and

 

eq = Mf 
eq 

, respectively. Thus, the evolution equation of density

istribution function can be rewritten as 

 

∗ = m − S (m − m 

eq ) (6)

here I is the unit tensor, and the equilibrium m 

eq is given by 

 

eq = ρnf 

[ 
1 , −11 + 19 | u | 2 , 3 − 11 

2 

| u | 2 , u x , −2 

3 

u x , u y , −2 

3 

u y , 

u z , −2 

3 

u z , 2 u 

2 
x − u 

2 
y − u 

2 
z , −1 

2 

(2 u 

2 
x − u 

2 
y − u 

2 
z ) , 

u 

2 
y − u 

2 
z , −1 

2 

(u 

2 
y − u 

2 
z ) , u x u y , u y u z , u x u z , 0 , 0 , 0 

] T 
(7)

The macroscopic density ρnf and velocity u are obtained from

nf = 

18 ∑ 

i =0 

f i , ρnf u = 

18 ∑ 

i =0 

e i f i (8)

nd the kinetic viscosity is given by 

nf = 

1 

3 

c 2 
(

1 

s ν
− 1 

2 

)
δt (9) 

.1.2. Correlations of nanofluids 

The density of nanofluids is calculated from Maiga et al. (2005) ;

ztop and Abu-Nada (2008) 

nf = (1 − φnp ) ρbf + φnp ρnp (10) 

here the subscript nf, bf and np denote nanofluids, base fluid and

anoparticle, respectively. φnp is the nanoparticle volume fraction. 

Corcione (2011a ); 2011b ) presented a general correlation for

iscosity of nanofluids based on experimental data ( Das et al.,

003; He et al., 2007; Lee et al., 2008 ), which is written as 

μnf 

μbf 

= 

[ 

1 − 34 . 87 

(
d np 

d bf 

)−0 . 3 

φ1 . 03 

] −1 

(11) 

here d bf = 0 . 1 
[
6 M/ (πN A ρ f 0 ) 

]1 / 3 
is the equivalent diameter of a

ase fluid molecule, M is the molecular weight of the base fluid,

nd N A is the Avogadro number. This correlation is applicable for

anoparticles diameter between 25 and 200 nm, volume fraction

.01–7.1%. 
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2.2. Particle-resolved method for microparticle suspension 

2.2.1. Translation and rotation of the microparticle 

The solid microparticles are considered as rigid body, so the

translational and rotational motion of the particles are determined

by Newton’s second law and Euler’s second law, respectively: 

M mp 
dU (t) 

dt 
= F (t) (12)

I mp · d�(t) 

dt 
+ �(t) × [ I mp · �(t) ] = T (t) (13)

where the subscript mp denotes the microparticle, M mp is the

mass of the microparticle, and F is the force exerted on the par-

ticle. I mp is the inertial tensor of the microparticle, � represents

angular velocity and T is the torque exerted on the solid parti-

cle. For homogenous spherical particles, the nonlinear term �( t )

× [ I mp · �( t )] vanishes. Thus, a first-order Euler method for solv-

ing ordinary differential equations is applied at each time step to

solve Eqs. 12 and 13 . 

2.2.2. Fluid-solid boundary interaction 

At the particle’s surface, the no-slip boundary condition should

be guaranteed. Due to the fact that the simple bounce-back

scheme requires an empirical correction for the effective hydrody-

namic radius ( Lishchuk et al., 2006 ), in this work, we adopt the

interpolated bounce back scheme ( Bouzidi et al., 2001; Lallemand

and Luo, 2003 ) for accurate curve wall boundaries. The parameter

q = | x f − x w 

| / | x f − x b | is defined to describe the fraction in fluid

region of a grid spacing intersected by the solid surface, where x f 
is boundary fluid node, x b is boundary solid node and x w 

is solid

boundary interface. Based on the relative location of x w 

, the inter-

polation scheme of the density distribution function after stream-

ing is given as, for q ≤ 0.5 

f ī (x f , t) = q (2 q + 1) f i (x f + e i δt , t) + (1 − 4 q 2 ) f i (x f , t) 

−q (1 − 2 q ) f i (x f − e i δt , t) + 2 ω i ρ0 

e ī · u w 

c 2 s 

(14)

for q ≥ 0.5 

f ī (x f , t) = 

1 

q (2 q + 1) 
f i (x f + e i δt , t) + 

2 q − 1 

q 
f ī (x f − e i δt , t) 

−2 q − 1 

2 q + 1 

f ī (x f − 2 e i δt , t) + 

1 

q (2 q + 1) 
2 ω i ρ0 

e ī · u w 

c 2 s 

(15)

where f 
ī 

is the distribution function associated with the velocity

e 
ī 
= −e i . 

To calculate the force and torque exerted by the fluid on the

solid particle, we adopt momentum-exchange method due to its

simplicity and robustness. The hydrodynamic force acting on the

solid surface is obtained by summing up the local momentum

exchange of the fluid parcels during the bounce back process at

the fluid solid interface over boundary links. Since the original

momentum-exchange method proposed by Ladd (1994) lacks lo-

cal Galilean invariance ( Peng et al., 2016; Tao et al., 2016 ), in this

work, we adopt the modified momentum-exchange method pro-

posed by Chen et al. (2013) , which uniformly distributes the mo-

mentum along the entire lattice link when accounting for the ef-

fect of covering fluid nodes or uncovering solid nodes. 

The total force is calculated as 

F = 

∑ 

x f 

∑ 

i bl 

{[
f + 
i 
(x f , t) + f ī (x f , t + δt ) 

]
e i − 2 ω i ρ0 

e i · u w 

c 2 s 

u w 

}
(16)
g  
nd the total torque is calculated as 

 = 

∑ 

x f 

∑ 

i bl 

(x w 

− x c ) ×
[

f + 
i 
(x f , t)(e i − u w 

) − f ī (x f , t + δt )(e ī −u w 

) 
]

(17)

here f + 
i 

denotes post-collision distribution function, and x c is the

enter position of the solid microparticle. The double summations

re first over the boundary links i bl pointing from a given boundary

ode x f into the solid surface, then over all the boundary nodes. 

. Simulation results and discussion 

.1. Validation I: Sedimentation of a sphere in a channel 

We consider a spherical particle of diameter d released in a

quare channel of width L and then settled under gravity, as illus-

rated in Fig. 1 (a). The terminal settling velocity of the particle is

ower in an environment with finite walls than that in an uncon-

ned domain. The wall effect is defined as ξ = u w 

/u 0 , where u w 

is

he terminal settling velocity of the particle in channel with nearby

alls. The unconfined terminal velocity u 0 is calculated from the

alance of gravity force, buoyancy force and drag force as 

 πdμu 0 = 

4 

3 

π

(
d 

2 

)3 

(ρs − ρ f ) g (18)

In the simulations, the channel width is set as L = 300 μm . The

ensity and dynamic viscosity of the liquid are ρ f = 1 g/cm 

3 and

= 1 g/(cm · s) , respectively. The density of the solid particle is

s = 2 g/cm 

3 
. Zero velocity is applied at the inlet, and the normal

erivative of velocity is zero at the outlet. To save the computa-

ion cost, a moving computational domain proposed by Aidun et al.

1998) is used to mimic an infinitely long channel. 

Fig. 1 (b) shows the wall effects on particle settling velocity. Our

B simulation results using three different mesh sizes N x × N y ×
 z = 40 × 40 × 120, 60 × 60 × 180, 80 × 80 × 240 are compared

ith experimental data given by Miyamura et al. Miyamura et al.

1981) . The two sets of results are in good agreement, demonstrat-

ng grid convergence of our adopted method. 

.2. Validation II: Migration of a sphere in a tube 

We consider a neutrally buoyant spherical particle migrating in

 tube, as illustrated in Fig. 2 (a). The fluid flow is driven by the

ressure difference at two ends of the tube. Initially, the particle

s set off the center axis of the tube. Due to the Segré–Silberberg

ffect Segre (1961) , the released particle will approach an equilib-

ium position roughly midway between the tube axis and the wall.

In the simulation, the particle center is initially set at a/R =
 . 21 . The radii of the spherical particle and the tube are r =
 . 375 cm and R = 2 . 5 cm , respectively. The dynamic viscosity of

he liquid is μ = 1 g/(cm · s) , and the density of the liquid is

f = 1 g / cm 

3 . The computational domain size is 327 × 109 × 109

attice. Pressure boundary conditions are set at the inlet and out-

et. In the pressure driven tube flow, the maximum velocity in the

xis of the tube is U m 

= �pR 2 / ( 4 μL ) . The Reynolds number is de-

ned as Re = 8 r 2 U m 

/ ( νR ) , and the case of Re = 9 is simulated to

ompare with results given by Yang et al. (2005) . As shown in

able 1 , the present simulation results agree well with that given

y the arbitrary Lagrangian–Eulerian method and the fictitious do-

ain method. From Fig. 2 (b), we can see the Segré–Silberberg ef-

ect is reproduced. 

.3. A single microparticle settling in nanofluids 

In suspensions containing micro- and nanoparticles, it is of en-

ineering interest to determine how much drag force will increase
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(a) (b)

Fig. 1. A solid sphere particle settling in a channel under gravity: (a) illustration of computational setup, the slice shows velocity of liquid in vertical direction, (b) particle 

settling velocity under various particle diameter to channel width ratios. 

(a) (b)

Fig. 2. A neutrally buoyant particle migrates in a pressure driven tube: (a) illustration of computational setup, the slice shows velocity of liquid in horizontal direction, (b) 

time history of particle center in radial direction. 

Table 1 

Equilibrium center position, horizontal velocity, and horizontal angular veloc- 

ity of the particle . 

a / R U x �y 

Present 0 .602 12 .3 cm/s 4.66 s −1 

Arbitrary Lagrangian–Eulerian method 0 .601 12 .4 cm/s 4.65 s −1 

Fictitious domain method 0 .606 12 .2 cm/s 4.63 s −1 

u  

e  

n  

a

C

w  

l  

t

 

1  

o  
nder various nanoparticle volume fraction and nanoparticle diam-

ter. To evaluate the drag force of microparticle sedimentation in
anofluids, we calculated the drag coefficient C d , which is defined

s 

 d = 

F d 
1 
2 
ρbf SU 

2 
t 

= 

4 
3 
π r 3 mp (ρmp − ρbf ) g 

1 
2 
ρbf SU 

2 
t 

(19) 

here F d is the average drag force, U t is the terminal settling ve-

ocity, and S = π r 2 mp is the projected area of the microparticle in

he ( x, y ) plane. 

In the simulations, the diameter of the microparticle is d mp =
00 μm , and the channel width is L = 400 μm . The density

f the microparticle and nanoparticle are ρmp = 5 g / cm 

3 and
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(a) (b)

Fig. 3. Drag coefficient of a microparticle settling in nanofluids: (a) absolute values of drag coefficient, (b) relative values of drag coefficient compared without adding 

nanoparticles. 
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i  

i  

a  

i

μ  
ρnp = 4 g / cm 

3 , respectively. The density and dynamic viscosity of

the base fluid are ρbf = 1 . 1 g / cm 

3 and μbf = 0 . 15 g/(cm · s) , re-

spectively. The computational domain is taken as N x × N y × N z =
70 × 70 × 210 . Zero velocity is applied at the inlet, and the normal

derivative of velocity is zero at the outlet. 

Fig. 3 (a) shows the drag coefficient of a microparticle settling

in nanofluids. The nanoparticle diameter is between 25 nm and

100 nm, and the nanoparticle volume fraction is 0.1 – 5%. It

is determined that the drag coefficient increases with increasing

nanoparticle volume fraction and decreasing nanoparticle diame-

ter. To obtain a quantitative comparison of how much drag coeffi-

cient increases due to the existence of nanoparticles, we calculated

the relative drag coefficient C ∗
d 
, which is defined as 

 

∗
d = 

C d − C d0 

C d0 

(20)

where C d 0 is the drag coefficient of the microparticle sedimenta-

tion in the same system but without the addition of nanoparticles.

It can be seen from Fig. 3 (b) that a three-fold increase in the drag

coefficient can be achieved by adding nanoparticles with diame-

ter 25 nm and volume fraction 5%. It is also noted that there is

a more dynamic increase in the drag coefficient for nanoparticles

with smaller sizes, as nanoparticle size plays an essential role in

the viscosity of nanofluids. 

The above investigations of drag force for microparticle sedi-

mentation in nanofluids takes into account of the case of a wide

channel with d mp /L = 0 . 25 . To explore the effect of microparticle

diameter to microchannel width ratio on the motion behavior of

the microparticles, in the following, we compare the drag coeffi-

cient for microchannel with d mp /L = 0.25, 0.5, and 0.75. To quanti-

tatively describe the effects of microchannel width, we calculated

the relative drag coefficient C ∗
d 

in Eq. 20 . Here, we choose C d 0 as

the drag coefficient of the microparticle sedimentation in an un-

confined domain containing nanofluids. To mimic the infinite un-

confined domain, a periodic boundary condition is applied in the

horizontal direction, while the moving computational domain is

used in the vertical direction. 

It is interesting to note from Fig. 4 that decreasing the mi-

crochannel width can lead to a dramatically increase in the drag

coefficient. As shown in Fig. 4 , the drag coefficient can generally in-
rease two or three orders of magnitude for the nanoparticle diam-

ter and nanoparticle volume fraction considered. This implies that

icroparticle diameter to microchannel width ratio plays the most

ritical role in determining the drag coefficient for a microparticle

edimentation. 

.4. A single microparticle migrating in nanofluids 

The phenomenon of inertial migration was first observed by

egré–Silberberg ( Segre, 1961 ) more than fifty years ago, and had

ot found its practical application until the emergence of microflu-

dic technology ( Amini et al., 2014; Di Carlo, 2009; Zhang et al.,

016 ). In microfluidics, both fluid inertial and viscosity are finite,

hich brings applications on precise manipulation of particles, in-

luding focusing and separation. In this work, we will investi-

ate the effects of adding nanofluids in microfluidics, including

anoparticle volume fraction and nanoparticle diameter. 

In the simulations, the diameters of the microparticle and the

ube are d mp = 60 μm and D = 300 μm , respectively. The den-

ity of the microparticle and nanoparticle are ρmp = 3 g / cm 

3 and

np = 4 g / cm 

3 , respectively. The density and dynamic viscosity of

he base fluid are ρbf = 1 . 1 g / cm 

3 and μbf = 0 . 15 g/(cm · s) , re-

pectively. The computational domain size is 237 × 79 × 79 lattice.

ressure boundary conditions are set at the inlet and outlet. Fig. 5

hows the equilibrium position of the microparticle center off the

icrotube axis. The results suggest that controlling the nanopar-

icle volume fraction and its diameter will be an additional option

n accurately separating or focusing the microparticles in microflu-

dics. 

.5. Mathematical correlation on relative viscosity 

First, we consider a neutrally buoyant micro spherical particle

n Couette flow without adding nanoparticles. Initially, the particle

s put at the center of the computational domain, while the top

nd bottom walls are moving in opposite directions, as illustrated

n Fig. 6 . The relative viscosity of the flow system is defined as 

r = 

μs 

μ
= 

〈 σ 〉 
ρνG 

(21)

bf 
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(a) dnp = 25 nm(( )) (b) dnp = 100 nm

Fig. 4. Drag coefficient of a microparticle settling in nanofluids with different microchannel width. 

Fig. 5. Equilibrium center position of the microparticle migration in microtube 

filled with nanofluids. 
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Fig. 6. Illustration of a spherical particle suspended in Couette flow, the slice shows 

velocity of liquid in horizontal direction. 
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a  
here μs and μbf are the effective viscosity of suspension and vis-

osity of the base fluid, respectively. G is the shear rate of Couette

ow without adding particles. As reported by Huang et al. (2012a );

012b ), the average shear stress 〈 σ 〉 can be obtained through av-

raging the shear stress acting on the moving flat wall over time. 

In the simulation, the computational domain size is 120 × 120

120 lattice. The radius of the spherical particle is between 10

nd 20 lattice, resulting in the volume fraction of solid particles

etween 0.24% and 1.92%. Periodical boundary conditions are ap-

lied in the X and Y directions; the upper and lower boundaries

re moving solid walls. Fig. 7 shows the simulation results of rel-

tive viscosity compared with Einstein’s theory of relative viscos-

ty in dilute suspensions of spheres. It is clearly demonstrated that

ur adopted method is capable of calculating relative viscosity of

phere particle suspensions. 

Now, we consider the viscosity of the suspensions that contain

oth micro- and nanoparticles. The computational domain size is

20 × 120 × 120 lattice. The radius of the microparticle is cho-

en as r mp = 10, 12, 14, 16, 17, 18, 19, 20 lattice, which generates

he microparticle volume fraction of φmp = 0.241%, 0.415%, 0.659%,
.985%, 1.181%, 1.402%, 1.649%, 1.932%; the nanoparticle volume

raction is set as φnp = 0.1%, 1%, 2%, 3%, 4%, 5%; the nanoparti-

le diameter is set as d np = 25 nm, 50 nm, 75 nm, 100 nm.

he scatter points in Fig. 8 show the calculated relative viscosities.

ased on the simulation data set with 192 points, we propose a

athematic correlation between relative viscosity of suspensions

nd micro- and nanoparticle volume fraction, which is written as

r = 

μs 

μbf 

= 1 + 3 . 8 φmp + 750 

(
d np 

d bf 

)−0 . 5 

φ1 . 57 
np (22)

here μr denotes the relative viscosity between the suspensions

nd the base fluid. φmp and φnp are the volume fractions of micro-

nd nanoparticle, respectively. d np is the diameter of nanoparti-
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Fig. 7. Relative viscosity of the suspension as a function of particle volume fraction. 
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cle and d bf = 0 . 1 
[
6 M/ (πN A ρ f 0 ) 

]1 / 3 
is the equivalent diameter of

a base fluid molecule, with M as the molecular weight of the base
(a) dnp = 25 nm

(c) dnp = 75 nm

Fig. 8. Relative viscosity as a function of mic
uid. The adjusted R-squared value for this correlation is 0.9963,

uggesting our proposed correlation fits the simulation data well. 

. Conclusion 

In this work, we have presented a three-dimensional LB model

o simulate suspensions that contain both micro- and nanoparti-

les. The microparticle dynamics is explicitly resolved, whilst the

anoparticle and base fluid are described as continua. The effects

f micro- and nanoparticle volume fraction, nanoparticle diameter,

nd microchannel size are examined with the present model. The

ain findings are summarized as follows: 

1. The drag coefficient for microparticle sedimentation increases

with increasing nanoparticle volume fraction and decreasing

nanoparticle diameter. Moreover, the drag coefficient increases

faster for nanoparticles with smaller sizes. 

2. The equilibrium position of the microparticle migration can be

adjusted by adding nanoparticles with various volume fractions

and diameters, which offers an additional option to accurately

control the microparticles motion in microfluidics. 

3. A mathematical correlation for predicting the relative viscosity

of suspensions has been proposed, which incorporates micro-

and nanoparticle volume fraction. It is believed that this corre-

lation represents a useful engineering tool for analysis and de-

sign application. 
(b) dnp = 50 nm

(d) dnp = 100 nm

ro- and nanoparticles volume fraction. 
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