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In this paper, we present a three-dimensional pseudo-potential-based lattice Boltzmann (LB) model with
an improved forcing scheme for multiphase flows. The Chapman–Enskog multiscale analysis shows that
the proposed forcing scheme allows the lattice Boltzmann equation to recover the three-dimensional
hydrodynamical equations with additional terms that correspond to the mechanical stability condition
and surface tension. Validations of the present LB model with Maxwell construction, Laplace’s law and
oscillation dynamics demonstrate that the model enables the density ratio to be as large as 700 in static
and quasi-static cases while maintaining variable surface tension. Finally, the application of the model to
simulation of the droplet motion in a microchannel shows that the model allows the analysis of impor-
tant effects, including droplet surface tension, channel surface wettability, and channel surface
roughness.

� 2015 Elsevier Inc. All rights reserved.
1. Introduction

A great deal of numerical studies on multiphase flows have
been done during the past decades, and they have attracted much
attention recently because of their wide applications in micro-
fluidics devices (Cheng et al., 2014). Traditionally, multiphase
flows are simulated by solving the macroscopic Navier–Stokes
equations coupled with various approaches to track the interface
among different phases. Generally, these approaches are classified
into two categories: one is the interface-tracking approach, i.e.,
using Lagrangian approach to explicitly represent the interface,
such as the front tracking method (Unverdi and Tryggvason,
1992), while the other is the interface-capturing approach, i.e.,
using Eulerian approach to implicitly represent the interface by a
scalar function, such as the volume of fluid method (Hirt and
Nichols, 1981), the level set method (Sethian and Smereka,
2003), and the phase field method (Badalassi et al., 2003). How-
ever, simulation of multiphase flows based on the Navier–Stokes
equations remains a challenging issue as it is difficult to track com-
plex phase interfaces that physically result from microscopic inter-
actions between molecules (Sbragaglia et al., 2006).
Alternatively, due to its kinetic nature, the lattice Boltzmann
(LB) method has proved to be a promising tool for simulating fluid
systems involving interfacial dynamics (such as multiphase flows)
and complex boundaries (such as porous media) (Chen and
Doolen, 1998). Existing LB models for multiphase flows can be
generally classified into four categories: the color-gradient model
(Gunstensen et al., 1991; Grunau et al., 1993), the pseudo-
potential model (Shan and Chen, 1993; Shan and Chen, 1994),
the free-energy model (Swift et al., 1995; Swift et al., 1996), and
the kinetic-theory-based model (He et al., 1998; He and Doolen,
2002). Among those models, the pseudo-potential model, which
is also called Shan–Chen model, has received much attention, pri-
marily because interfaces can naturally arise, deform, and migrate,
thereby improving the computational efficiency (Chen et al., 2014;
Succi, 2015). Specifically, the fluid interactions are described by an
artificial inter-particle potential and the phase separation is natu-
rally achieved by imposing a short-range attraction among differ-
ent phases. However, there are two issues associated with the
pseudo-potential model proposed by Shan and Chen (1993,
1994). One is that this model is applicable to low-density-ratio
interfacial problems only (Yuan and Schaefer, 2006), while the
other is that in this model surface tension cannot be varied inde-
pendently of the density ratio (Sbragaglia et al., 2007). Over the
past years, efforts have been made to address these issues (Yuan
and Schaefer, 2006; Sbragaglia et al., 2007; Shan, 2006; Huang
et al., 2011; Li et al., 2012; Li et al., 2013; Li and Luo, 2013). For
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instance, one of previous efforts is to incorporate the fluid interac-
tion force into the pseudo-potential model via improving the
forcing scheme (Huang et al., 2011; Li et al., 2012; Li et al., 2013;
Li and Luo, 2013). Li et al. (2013) proposed a forcing scheme for
a two-dimensional (2D) multiple-relaxation-time (MRT) pseudo-
potential LB model. This forcing scheme can adjust the mechanical
stability condition so that multiphase flows with a large density
ratio can be simulated. In addition, Li and Luo (2013) also proposed
to adjust the surface tension in the 2D MRT pseudo-potential LB
model by incorporating a source term of the LB equation, which
is based on the derivation of discrete form pressure tensor. As a
practical numerical tool for simulating engineering problems,
however, it is desirable to extend 2D models to three-
dimensional (3D) models to truly reflect the real-world multiphase
flow behaviors. However, as the underlying lattice structure for 2D
and 3D models are different, there are significant differences in the
development and implementation of 3D MRT models (Premnath
and Abraham, 2007).

In this work, we extend the 2D forcing scheme proposed by Li
et al. (2013) and Li and Luo (2013) to 3D MRT pseudo-potential
LB model for single-component multiphase flows with a large
density ratio and variable surface tension. The rest of the paper
is organized as follows: In Section 2, we present the pseudo-
potential LB model and give the new forcing scheme, followed by
the Chapman–Enskog analysis to derive macroscopic equations.
In Section 3, the present multiphase LB model is evaluated by ver-
ifying Maxwell construction, Laplace’s law, spurious velocities,
spatial accuracy, oscillation dynamics and contact angle, respec-
tively. After that, numerical simulations are carried out to study
liquid droplets moving in a 3D microchannel, including the effects
of droplet surface tension, channel surface wettability, and channel
surface roughness.

2. Numerical method

2.1. Two-phase lattice Boltzmann method

2.1.1. The multiple-relaxation-time LB model
The evolution equation of LB model can be written as

f iðxþ eidt ; t þ dtÞ � f iðx; tÞ ¼ Xi þ dtF
0
i ð1Þ

where f i is the density distribution function, t is the time, x is par-
ticle position, ei is the discrete velocity along the ith direction, dt is
the time step, F 0

i is the forcing term in velocity space, Xi is the
collision operator which can be expressed by either Bhatnagar–Gr
oss–Krook (BGK) collision operator (Qian et al., 1992) or multiple-
relaxation-time (MRT) collision operator (Lallemand and Luo,
2000; d’Humières, 2002). In this work, we adopt MRT collision
operator for its superior numerical stability over BGK
collision operator in simulating both single and multiphase flow
(Premnath and Abraham, 2007; Lallemand and Luo, 2000;
d’Humières, 2002; Chai and Zhao, 2012). The MRT collision operator
Xi is defined as

Xi ¼ �ðM�1SMÞij f jðx; tÞ � f ðeqÞj ðx; tÞ
h i

ð2Þ

For the D3Q15 lattice model, ei can be given as

e0;e1;e2;e3;e4;e5;e6;e7;e8;e9;e10;e11;e12;e13;e14½ �

¼ c

0 1 �1 0 0 0 0 1 �1 1 �1 1 �1 1 �1

0 0 0 1 �1 0 0 1 1 �1 �1 1 1 �1 �1

0 0 0 0 0 1 �1 1 1 1 1 �1 �1 �1 �1

264
375

ð3Þ
where c ¼ dx=dt is lattice constant. M is orthogonal transformation
matrix, given by d’Humières (2002)
M¼

1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
�2 �1 �1 �1 �1 �1 �1 1 1 1 1 1 1 1 1
16 �4 �4 �4 �4 �4 �4 1 1 1 1 1 1 1 1
0 1 �1 0 0 0 0 1 �1 1 �1 1 �1 1 �1
0 �4 4 0 0 0 0 1 �1 1 �1 1 �1 1 �1
0 0 0 1 �1 0 0 1 1 �1 �1 1 1 �1 �1
0 0 0 �4 4 0 0 1 1 �1 �1 1 1 �1 �1
0 0 0 0 0 1 �1 1 1 1 1 �1 �1 �1 �1
0 0 0 0 0 �4 4 1 1 1 1 �1 �1 �1 �1
0 2 2 �1 �1 �1 �1 0 0 0 0 0 0 0 0
0 0 0 1 1 �1 �1 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 1 �1 �1 1 1 �1 �1 1
0 0 0 0 0 0 0 1 1 �1 �1 �1 �1 1 1
0 0 0 0 0 0 0 1 �1 1 �1 �1 1 �1 1
0 0 0 0 0 0 0 1 �1 �1 1 �1 1 1 �1

266666666666666666666666666666664

377777777777777777777777777777775
ð4Þ

and S is a relaxation matrix. To keep the relaxation matrix S
consistent with the moment, we write it as S ¼ diagðsq; se; s�;
sj; sq; sj; sq; sj; sq; sm; sm; sm; sm; sm; sxyzÞ.

The density distribution function f i and its equilibrium distribu-

tion f ðeqÞi can be projected onto moment space via m ¼ Mf and

mðeqÞ ¼ MfðeqÞ, respectively. Thus, the evolution equation of density
distribution function can be rewritten as

m� ¼ m� Sðm�mðeqÞÞ þ dt I� S
2

� �
M~F ð5Þ

where I is the unit tensor and M~F is the forcing term in the moment
space with ðI� 0:5SÞM~F ¼ MF0, the equilibrium mðeqÞ is given by

mðeqÞ ¼ q 1;�1þ juj2;1� 5juj2;ux;�7
3
ux;uy;�7

3
uy;uz;

�
�7
3
uz;2u2

x � u2
y � u2

z ;u
2
y � u2

z ;uxuy;uyuz;uxuz;0
�T

ð6Þ

where ux; uy and uz denote the fluid velocity components in the

ðx; y; zÞ Cartesian coordinate system, and juj2 ¼ u2
x þ u2

y þ u2
z .

The macroscopic density q and velocity u are obtained from

q ¼
X
i

f i; qu ¼
X
i

eif i þ
dt
2
F ð7Þ

where F ¼ ðFx; Fy; FzÞ is the total force acting on the system.

2.1.2. Pseudo-potential model
For single-component multiphase flows, the interaction force

mimicking molecular interactions, is given by Shan (2006, 2008)

FintðxÞ ¼ �GwðxÞ
XN
i¼1

wðjeij2Þwðxþ eiÞei ð8Þ

where wðxÞ is the interaction potential, G is the interaction strength,

and wðjeij2Þ are the weights. For the case of nearest-neighbor inter-
actions on D3Q15 lattice, wð1Þ ¼ 1=3; wð3Þ ¼ 1=24 and N ¼ 14.

In the pseudo-potential model, the interaction force is usually
incorporated via a forcing scheme, which affects the numerical
accuracy and stability of the model. In this study, we extend the
forcing scheme proposed by Li et al. (2013) and Li and Luo
(2013) to D3Q15 lattice. The evolution equation of density distri-
bution function is written as

m� ¼ m� Sðm�mðeqÞÞ þ dt I� S
2

� �
M~Fþ C ð9Þ

where the term M~F and C are given by
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M~F ¼

0

2u � Fþ 6rjFj2
w2dtðs�1

e �0:5Þ

�10u � F
Fx

� 7
3 Fx

Fy

� 7
3 Fy

Fz

� 7
3 Fz

4uxFx � 2uyFy � 2uzFz

2uyFy � 2uzFz

uxFy þ uyFx

uyFz þ uzFy

uxFz þ uzFx

0

266666666666666666666666666666666666664

377777777777777777777777777777777777775

; C ¼

0
4
5 seðQxx þ Qyy þ QzzÞ

0

0

0

0

0

0

0

�smð2Qxx � Qyy � QzzÞ
�smðQyy � QzzÞ

�smQxy

�smQyz

�smQxz

0

266666666666666666666666666666666666664

377777777777777777777777777777777777775
ð10Þ

respectively. Here, r is used to vary the mechanical stability condi-
tion. The variables Qxx; Qyy; Qzz; Qxy; Qyz and Qxz are obtained
from

Q ¼ j
G
2
wðxÞ

X14
i¼1

wðjeij2Þ½wðxþ eiÞ � wðxÞ�eiei ð11Þ

where the parameter j is used to vary the surface tension.

2.1.3. Fluid–solid interactions
When a solid wall is encountered, the adhesive force between

the solid and the fluid should also be considered (Martys and
Chen, 1996). Historically, two widely used fluid–solid interaction
have been proposed: the density-based interaction (Martys and
Chen, 1996; Kang et al., 2002) and the pseudopotential-based
interaction (Raiskinmäki et al., 2000; Benzi et al., 2006).

Recently, Li et al. (2014) studied the implementation of contact
angles in the pseudo-potential LB model at a large density ratio,
and formulated a modified pseudopotential-based fluid–solid
interaction, given by

FadsðxÞ ¼ �GadswðxÞ
X
i

wðjeij2ÞwðxÞsðxþ eiÞei ð12Þ

where Gads is the fluid–solid interaction strength for adjusting the
contact angles. sðxÞ is the indicator function, sðxÞ ¼ 1 when x is in
solid and sðxÞ ¼ 0 when x is in fluid.

With the body force Fbody, the total force F in Eq. (10) is given by

F ¼ Fint þ Fads þ Fbody ð13Þ
2.2. Derivation of the macroscopic equations

We now present a detailed analysis of the derivation of the
macroscopic equations for multiphase flows from LB equation with
the above proposed forcing scheme. To this end, we adopt the
Chapman–Enskog analysis (Chai and Zhao, 2012).

Applying Taylor expansions for Eq. (9) to second-order, we
obtain

bDmþ dt
2

bD2m ¼ �S0ðm�mðeqÞÞ þ I� S
2

� �
M~Fþ 1

dt
~C ð14Þ

where bD ¼ MDM�1, D ¼ @tIþ @adiagðc0a; c1a; . . . ; c14aÞ, and S0 ¼ S=dt .
Introduce the following multiscale expansions,
m ¼
X1
n¼0

�nmðnÞ; @t ¼ �@t1 þ �2@t2 ; @a ¼ �@a1 ;

F ¼ �F1; C ¼ �C1

ð15Þ

where mk ¼ M � fðkÞ; F1 ¼ ðFx1 ; Fy1 ; Fz1 Þ.
Substituting the above expansions into Eq. (14), we can obtain

the zero-, first-, and second-order equations in � as

�0 : mð0Þ ¼ mðeqÞ ð16aÞ

�1 : bD1mð0Þ ¼ �S0mð1Þ þ I� S
2

� �
M~F1 þ 1

dt
C1 ð16bÞ

�2 : @t2m
ð0Þ þ bD1ðI� S

2
Þmð1Þ þ dt

2
bD1 I� S

2

� �
M~F1

þ 1
2
bD1C1 ¼ �S0mð2Þ ð16cÞ

where S0 ¼ S=dt , bD1 ¼ MD1M
�1, and D1 ¼ @t1 Iþ @a1 diag

ðc0a; c1a; . . . ; c14aÞ. The elements ofmð1Þ corresponding to the conser-
vative variables q and qu are zero and �dtF1=2, so we can further
rewrite Eq. (16) as

@t1

q

qð�1þjuj2Þ
qð1�5juj2Þ

qux

�7
3qux

quy

�7
3quy

quz

�7
3quz

qð2u2
x �u2

y �u2
z Þ

qðu2
y �u2

z Þ
quxuy

quyuz

quxuz

0

266666666666666666666666666666666666666666664

377777777777777777777777777777777777777777775

þ@x1

qux

�1
3qux

�7
3qux

pþqu2
x

1
9qBx

quxuy

quxuy

quxuz

quxuz

4
3qux

0

1
3quy

0

1
3quz

quyuz

26666666666666666666666666666666666666666664

37777777777777777777777777777777777777777775

þ@y1

quy

�1
3quy

�7
3quy

quxuy

quxuy

pþqu2
y

1
9qBy

quyuz

quyuz

�2
3quy

2
3quy

1
3qux

1
3quz

0

quxuz

26666666666666666666666666666666666666666664

37777777777777777777777777777777777777777775

þ@z1

quz

�1
3quz

�7
3quz

quxuz

quxuz

quyuz

quyuz

pþqu2
z

1
9qBz

�2
3quz

�2
3quz

0

1
3quy

1
3qux

quxuy

26666666666666666666666666666666666666666664

37777777777777777777777777777777777777777775

¼

0

�s0ee
ð1Þ

�s0��
ð1Þ

dt
2 s

0
jFx1

�s0qq
ð1Þ
x

dt
2 sj0Fy1

�s0qq
ð1Þ
y

dt
2 sj0Fz1

�s0qq
ð1Þ
z

�s0m3p
ð1Þ
xx

�s0mp
ð1Þ
ww

�s0mp
ð1Þ
xy

�s0mp
ð1Þ
yz

�s0mp
ð1Þ
xz

�s0xyzm
ð1Þ
xzy

266666666666666666666666666666666666666666666664

377777777777777777777777777777777777777777777775

þ

0

ð1� se
2Þ 2u �F1 þ 6rjF1 j2

w2 ðs�1
e �0:5Þdt

� �
ð1� s�

2Þð�10u �F1Þ
ð1� sj

2ÞFx1

�7
3ð1� sq

2ÞFx1

ð1� sj
2ÞFy1

�7
3ð1� sq

2ÞFy1

ð1� sj
2ÞFz1

�7
3ð1� sq

2 ÞFz1

ð1� sm
2Þð4uxFx1 �2uyFy1 �2uzFz1 Þ
ð1� sm

2Þð2uyFy1 �2uzFz1 Þ
ð1� sm

2ÞðuxFy1 þuyFx1 Þ
ð1� sm

2 ÞðuyFz1 þuzFy1 Þ
ð1� sm

2ÞðuxFz1 þuzFx1 Þ
0

2666666666666666666666666666666666666666666664

3777777777777777777777777777777777777777777775

þ

0

4
5se0ðQxx1 þQyy1 þQzz1 Þ

0

0

0

0

0

0

0

�s0mð2Qxx1 �Qyy1 �Qzz1 Þ
�s0mðQyy1 �Qzz1 Þ

�s0mQxy1

�s0mQyz1

�s0mQxz1

0

26666666666666666666666666666666666666666664

37777777777777777777777777777777777777777775
ð17Þ

where p ¼ qc2s , Bx ¼ �7� 21u2
x þ 15u2

y þ 15u2
z , By ¼ �7þ 15u2

x�
21u2

y þ 15u2
z , Bz ¼ �7þ 15u2

x þ 15u2
y � 21u2

z . Similarly, we can also
derive the second-order hydrodynamic equations in �, but we
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present only the ones corresponding to the conservative variables q
and qu.

@t2q¼0 ð18aÞ

@t2 ðquxÞ�dt
2
@t1 ð1�sj

2
ÞFx1

h i
þ@x1 ð1�se

2
Þ1
3
eð1Þ þð1�sm

2
Þpð1Þ

xx

� �
þ@y1 ð1�sm

2
Þpð1Þ

xy

h i
þ@z1 ð1�sm

2
Þpð1Þ

xz

h i
þdt
2
@t1 ð1�sj

2
ÞFx1

h i
þdt
2
@x1

2
3
ð1�se

2
ÞðFxuxþFyuyþFzuzÞ

�
þ2
3
ð1�sm

2
Þð2Fxux�Fyuy�FzuzÞþ1

3
ð1�se

2
Þ6rðF

2
x1
þF2

y1
þF2

z1
Þ

w2ðs�1
e �0:5Þdt

#

þdt
2
@y1 ð1�sm

2
ÞðFy1uxþFx1uyÞ

h i
þdt
2
@z1 ð1�sm

2
ÞðFz1uxþFx1uzÞ

h i
þdt
2
@x1 ½

4
15

s0eðQxx1 þQyy1 þQzz1 Þ�
1
3
ð2Qxx1 �Qyy1 �Qzz1 Þs0m�

þdt
2
@y1 ð�Qxy1s

0
mÞþ

dt
2
@z1 ð�Qxz1 s

0
mÞ¼0 ð18bÞ

@t2 ðquyÞ�dt
2
@t1 ð1�sj

2
ÞFy1

h i
þ@x1 ð1�sm

2
Þpð1Þ

xy

h i
þ@y1 ð1�se

2
Þ1
3
eð1Þ þð1�sm

2
Þ1
2
pð1Þ
ww�ð1�sm

2
Þ1
2
pð1Þ
xx

� �
þ@z1 ð1�sm

2
Þpð1Þ

yz

h i
þdt
2
@t1 ð1�sj

2
ÞFy1

h i
þdt
2
@x1 ð1�sm

2
ÞðFy1uxþFx1uyÞ

h i
þdt
2
@y1 ð1�sm

2
Þ2
3
ð�Fx1uxþ2Fy1uy�Fz1uzÞ

�
þ2
3
ð1�se

2
ÞðFx1uxþFy1uyþFz1uzÞþ1

3
ð1�se

2
Þ6rðF

2
x1
þF2

y1
þF2

z1
Þ

w2ðs�1
e �0:5Þdt

#

þdt
2
@z1 ð1�sm

2
Þpð1Þ

yz

h i
þdt
2
@x1 ð�Qxy1 s

0
mÞ

þdt
2
@y1 ½

4
15

s0eðQxx1 þQyy1 þQzz1 Þþ
s0m
3
ðQxx1 �2Qyy1 þQzz1 Þ�

þdt
2
@z1 ð�Qyz1s

0
mÞ¼0 ð18cÞ

@t2 ðquzÞ�dt
2
@t1 ð1�sj

2
ÞFz1

h i
þ@x1 ð1�sm

2
Þpð1Þ

xz

h i
þ@y1 ð1�sm

2
Þpð1Þ

yz

h i
þ@z1 ð1�se

2
Þ1
3
eð1Þ �ð1�sm

2
Þ1
2
pð1Þ
ww�ð1�sm

2
Þ1
2
pð1Þ
xx

� �
þdt
2

@t1 ð1�
sj
2
ÞFz1

h i
þdt
2
@x1 ð1�sm

2
ÞðFz1uxþFx1uzÞ

h i
þdt
2
@y1 ð1�sm

2
ÞðFz1uyþFy1uzÞ

h i
þdt
2
@z1 ð1�se

2
Þ2
3
ðFx1uxþFy1uyþFz1uzÞ

�
�2
3
ð1�sm

2
ÞðFx1uxþFy1uy�2Fz1uzÞþ1

3
ð1�se

2
Þ6rðF

2
x1
þF2

y1
þF2

z1
Þ

w2ðs�1
e �0:5Þdt

#

þdt
2
@x1 ð�Qxz1s

0
mÞþ

dt
2
@y1 ð�Qyz1 s

0
mÞ

þdt
2
@z1

4
15

s0eðQxx1 þQyy1 þQzz1 Þþ
s0m
3
ðQxx1 þQyy1 �2Qzz1 Þ

� �
¼0 ð18dÞ

Neglecting the term Oðjuj3Þ and with the aid of Eq. (17), we obtain

the following equations for eð1Þ; pð1Þ
xx ; pð1Þ

ww; pð1Þ
xy ; pð1Þ

yz and pð1Þ
xz :

�s0ee
ð1Þ ¼ 2pð@x1ux þ @y1uy þ @z1uzÞ þ seðuxFx1 þ uyFy1 þ uzFz1 Þ

� 6rðF2
x1
þ F2

y1
þ F2

z1
Þse

w2dt
� 4
5
s0eðQxx1 þ Qyy1 þ Qzz1 Þ ð19aÞ

�s0m3p
ð1Þ
xx ¼ 2pð2@x1ux � @y1uy � @z1uzÞ þ smð2uxFx1 � uyFy1

� uzFz1 Þ þ s0mð2Qxx1 � Qyy1 � Qzz1 Þ ð19bÞ
� s0mp
ð1Þ
ww ¼ 2pð@y1uy � @z1uzÞ þ smðuyFy1 � uzFz1 Þ þ s0mðQyy1 � Qzz1 Þ

ð19cÞ

�s0mp
ð1Þ
xy ¼ pð@x1uy þ @y1uxÞ þ sm

2
ðuxFy1 þ uyFx1 Þ þ s0mQxy1 ð19dÞ

�s0mp
ð1Þ
yz ¼ pð@y1uz þ @z1uyÞ þ sm

2
ðuyFz1 þ uzFy1 Þ þ s0mQyz1 ð19eÞ

�s0mp
ð1Þ
xz ¼ pð@x1uz þ @z1uxÞ þ sm

2
ðuxFz1 þ uzFx1 Þ þ s0mQxz1 ð19fÞ

Substituting Eq. (19) into Eq. (18) results in the second-order hydro-
dynamic equations in � as

@t2q ¼ 0 ð20aÞ

@t2 ðquxÞ ¼ @x1 qnð@x1ux þ @y1uy þ @z1uzÞ
�

þ2
3
qmð2@x1ux � @y1uy � @z1uzÞ �

2rðF2
x1
þ F2

y1
þ F2

z1
Þ

w2

þð2
5
Qxx1 �

3
5
Qyy1 �

3
5
Qzz1 Þ

�
þ @y1 qmð@x1uy þ @y1uxÞ þ Qxy1

� 	
þ @z1 qmð@x1uz þ @z1uxÞ þ Qxz1

� 	 ð20bÞ

@t2 ðquyÞ ¼ @x1 qmð@x1uy þ @y1uxÞ þ Qxy1

� 	
þ @y1 qnð@x1ux þ @y1uy þ @z1uzÞ

�
þ2
3
qmð�@x1ux þ 2@y1uy � @z1uzÞ �

2rðF2
x1
þ F2

y1
þ F2

z1
Þ

w2

þð�3
5
Qxx1 þ

2
5
Qyy1 �

3
5
Qzz1 Þ

�
þ @z1 qmð@y1uz þ @z1uyÞ þ Qxz1

� 	 ð20cÞ

@t2 ðquzÞ ¼ @x1 qmð@x1uz þ @z1uxÞ þ Qxz1

� 	
þ @y1 qmð@y1uz þ @z1uyÞ þ Qyz1

� 	
þ @z1 qnð@x1ux þ @y1uy þ @z1uzÞ

�
� 2
3
qmð@x1ux þ @y1uy � 2@z1uzÞ

�2rðF2
x1
þ F2

y1
þ F2

z1
Þ

w2 þ ð�3
5
Qxx1 �

3
5
Qyy1 þ

2
5
Qzz1 Þ

#
ð20dÞ

where m and n are the kinematic and bulk viscosities and given by

m ¼ 1
3

1
sm

� 1
2

� �
dt ; n ¼ 2

9
1
se
� 1
2

� �
dt ð21Þ

Applying the Taylor expansion to Eqs. (8) and (11) yields

F ¼ �Gc2 wrwþ 1
6
c2wrðr2wÞ þ . . .

� �
ð22aÞ

Q ¼ 1
12

jGc4 wr2wIþ 2wrrwþ . . .
h i

ð22bÞ

Combining the results at the t1 and t2 time scales, i.e., Eqs. (17) and
(20), and with the aid of Eq. (22), we obtain the following macro-
scopic equations:

@q
@t

þr � ðquÞ ¼ 0 ð23aÞ

@ðquÞ
@t

þr � ðquuÞ ¼ �r � ðqc2s IÞ þ r �Pþ F� 2G2c4rr � ðjrwj2IÞ

� r � j
Gc4

6
ðwr2wI� wrrwÞ

" #
ð23bÞ
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where P is shear stress and defined by

P ¼ qm ruþ ðruÞT
h i

þ q n� 2
3
m

� �
ðr � uÞI ð24Þ

Define the discrete form pressure tensor P as (Shan, 2008)X
P � A ¼

X
qc2s I � A�

X
F ð25Þ

where A is an area element. Combines Eqs. (25) and (23b), then the
discrete form pressure tensor will be given by

P ¼ qc2s þ
Gc2

2
w2 þ Gc4

12
ð1þ 2jÞwr2wþ 2rG2c4jrwj2

" #
� I

þ Gc4

6
ð1� jÞwrrw ð26Þ

where c2s denotes the speed of the sound and c2s ¼ 1=3c2 for D3Q15
model. Following Shan’s work (Shan, 2008), the surface tension
coefficient is defined as

c ¼
Z 1

�1
ðp0 � pTÞdz ¼ �Gc4ð1� jÞ

6

Z ql

qg

w02 dq
dz

� �
dq ð27Þ

where pn is the normal pressure tensor, pT is the transversal pres-
sure tensor, and w0 ¼ dw=dq. Here, we take the z direction as the
normal direction of the flat interface. When r ¼ 0 and j ¼ 0, Eq.
(26) will reduce to the standard pressure tensor of the pseudopo-
tential LB model. The mechanical stability condition (Li and Luo,
2013) is given as � ¼ �2ðaþ 24GrÞ=b, where a and b are given by
Shan (2008) a ¼ 0 and b ¼ 3, respectively. It has been shown in Li
et al. (2012) that the parameter � is chosen as 1 < � < 2 to make
the mechanical stability condition approximate the thermodynamic
consistency requirement. In the present study, we fix G ¼ �1, thus
the parameter r is calculated as 0:0625 < r < 0:125. The exact
value of parameter r is further determined by fitting the Maxwell
construction solution as illustrated in the following section.

3. Simulation results and discussion

3.1. Evaluation of thermodynamic consistency

We consider a flat interface problem to compare the coexis-
tence curves obtained numerically and given by Maxwell construc-
tion. Two equations of state for non-ideal gases are considered
(Yuan and Schaefer, 2006):
(a) Coexistence curve of the C-S EOS

Fig. 1. Comparison of the numerical coexistence curves with
1. The Carnahan–Starling (C–S) equation of state is given by
pEOS ¼ qRT
1þ bq=4þ ðbq=4Þ2 � ðbq=4Þ3

ð1� bq=4Þ3
� aq2 ð28Þ

where a ¼ 0:4963R2T2
c =pc; b ¼ 0:18727RTc=pc; T is temperature

and subscript of c denotes the critical value. Setting
a ¼ 0:25; R ¼ 1, and R ¼ 1, then Tc would be given by 0.02358.

2. The Peng–Robinson (P–R) equation of state is given by
pEOS ¼
qRT

1� bq
� aaðTÞq2

1þ 2bq� b2q2
ð29Þ

where aðTÞ ¼ 1þ ð0:37464þ 1:54226x� 0:26992x2Þ��
ð1� ffiffiffiffiffiffiffiffiffiffi

T=Tc

p Þ�2, with x being the acentric factor determined by
the substance under consideration. Here, we choose x ¼ 0:344,
which is the acentric factor of water. The critical properties are
given by a ¼ 0:45724R2T2

c=pc and b ¼ 0:0778RTc=pc . Setting
a ¼ 1=100; b ¼ 2=21, and R ¼ 1; Tc would be given by 0.017866.

In the simulations, the interaction strength G in Eq. (8) is fixed
as G ¼ �1, and the interaction potential wðxÞ is determined as

wðxÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2ðpEOS � qc2s Þ=Gc2

q
. A 100� 100� 100 lattice is adopted.

The periodical boundary conditions are applied in all three direc-
tions, and the density field is initialized as follows:

qðx; y; zÞ ¼ qg þ
ql � qg

2
tanhðz1Þ � tanhðz2Þ½ � ð30Þ

where z1 ¼ 2ðz� 25Þ=W; z2 ¼ 2ðz� 75Þ=W and W ¼ 5 is the initial
interface thickness. The parameter j in Eq. (11) is set to be j ¼ 0.

The coexistence curves obtained from r ¼ 0:12 are shown in
Fig. 1. It clearly demonstrates that the present forcing scheme is
capable of achieving thermodynamic consistency and large density
ratio in the MRT pseudo-potential LB model.

3.2. Evaluation of Laplace’s law

The validation of the model with Laplace’s law is made by
simulating droplets with different radii. According to Laplace’s
law, the pressure difference across a circular interface is related
to the surface tension c and the droplet radius R via
dp ¼ pin � pout ¼ 2c=R. When the surface tension is given, the
pressure difference dp will be proportional to 1=R.
(b) Coexistence curve of the P-R EOS

the coexistence curves given by Maxwell construction.



Fig. 3. Errors of the densities of liquid and gas as a function of mesh size.

Fig. 4. Radii of the oscillatory spheroid as a function of time.

Fig. 2. Numerical validation of the Laplace’s law.

Table 1
Comparison of spurious velocities jusjmax in SRT and MRT simulations.

j ¼ 0 j ¼ 0:5 j ¼ 0:95

s�1
m ¼ 0:6 SRT NaN NaN NaN

MRT 0.05571 0.05662 0.06745

s�1
m ¼ 1:0 SRT 0.04068 0.03490 0.02792

MRT 0.03201 0.02682 0.02133
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In the simulations, a 120� 120� 120 lattice is adopted. The
periodical boundary conditions are applied in all three directions,
and the density field is initialized as

qðx;y;zÞ¼qlþqg

2
þql�qg

2

� tanh
2ð

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðx�x0Þ2þðy�y0Þ2þðz�z0Þ2

q
�RÞ

W

0@ 1A24 35 ð31Þ

where ðx0; y0; z0Þ is the center position of the computational
domain, R is the radius of the droplet, and W ¼ 5 is the initial inter-
face width. C–S EOS is used and the parameter r in Eq. (10) is set to
be r ¼ 0:12 to achieve thermodynamic consistency. The tempera-
ture is T ¼ 0:5Tc , which corresponds to ql=qg � 720. The numerical
pressure differences at j ¼ 0; 0:5; 0:95 with 20 < R < 40 are
shown in Fig. 2. The solid lines denote linear fit of the LB simulation
results. The coefficients of determination are 0.9998, 0.9994,
0.9978, respectively, which means the pressure difference inside
and outside the droplet is indeed proportional to the reciprocal of
the radius, and Laplace’s law is well satisfied.

3.3. Evaluation of spurious velocities

The spurious velocities in the simulations are investigated in
order to compare the performance of the proposed MRT model
with single-relaxation-time (SRT) model. The MRT model relaxes
various moments (e.g., density, energy, momentum, heat flux,
stress tensor) to their equilibrium states at different relaxation
times during collisions, and reduces to the SRT model once the
parameters of the relaxation matrix si in S ¼ diagðsq; se; s�;
sj; sq; sj; sq; sj; sq; sm; sm; sm; sm; sm; sxyzÞ are equal to each other. In the
simulations, a 120� 120� 120 lattice is adopted, and the radius
of the droplet is set to be R ¼ 30. The boundary conditions are peri-
odical in all three directions, and density field are initialized using
Eq. (31). In the SRT model, the relaxation times are choose as
sq ¼ se ¼ s� ¼ sj ¼ sq ¼ sxyz ¼ sm; while in the MRT model, sq ¼ 1:0,
se ¼ 1:1, s� ¼ 1:1; sj ¼ 1:0; sq ¼ 1:1, and sxyz ¼ 1:2. Table 1
compares the maximum spurious velocities at the density ratio
of ql=qg � 720. We can see that the use of MRT model reduces
the spurious velocities and enhances the numerical stability.

3.4. Evaluation of spatial accuracy

The spatial accuracy of the present model is tested by the case
of a spherical droplet. In the simulations, different mesh sizes
Nx � Ny � Nz ¼ 44� 44� 44; 88� 88� 88; 132� 132� 132, and
176� 176� 176 are used. The radius of the droplet is R ¼ Nx=4.
The boundary conditions are periodical in all three directions,
and density field are initialized using Eq. (31). We assume the
mesh 176� 176� 176 is the finest mesh and the result at this
mesh is accurate. The error of mesh size Nx is defined as
ErrorðNxÞ ¼ jqðNxÞ � qð176Þj, where qðNxÞ stands for the density
of liquid or gas obtained by mesh size Nx � Nx � Nx. The errors
are illustrated in Fig. 3, where the top thick red line represents
exact second-order spatial accuracy, so we can see the present
model is approximately second-order accuracy in space.
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3.5. Evaluation of droplet oscillation

In addition to steady-sate problems, the present model is also
validated by dynamic case. Here, we simulate the droplet oscilla-
tion. The frequency for the nth mode of droplet oscillation is given
by Miller and Scriven (1968)

xn ¼ x�
n �

1
2
ax�12

n þ 1
4
a2 ð32Þ

where xn is the angular response frequency and x�
n is Lamb’s

natural resonance frequency (Lamb, 1932)

x�
n

� �2 ¼ nðnþ 1Þðn� 1Þðnþ 2Þ
R3
d nqg þ ðnþ 1Þql

h i c ð33Þ

where Rd is the equilibrium radius of the drop, and c is the interfa-
cial surface tension. The parameter a is given by Miller and Scriven
(1968)

a ¼ ð2nþ 1Þ2ðlllgqlqgÞ1=2ffiffiffi
2

p
Rd½nqg þ ðnþ 1Þql�½ðllqlÞ1=2 þ ðlgqgÞ1=2�

ð34Þ

where ll and lg are the dynamic viscosity of the liquid and gas,
respectively.

In the simulations, an ellipsoidal drop is used for the initial
condition

ðx� x0Þ2
R2 þ ðy� y0Þ2

R2 þ ðz� z0Þ2
ð0:8RÞ2

¼ 1 ð35Þ

where ðx0; y0; z0Þ is the center of the ellipsoid and the computational
domain. The radius is set to be R ¼ 30 and the ellipsoid is initially
placed in the center of the computational domain. Fig. 4 shows
the radii of the spheroid as a function of lattice time. The solid line
and the dashed line represent the radius measured from the center
of the droplet in horizontal and vertical directions, respectively.
When the solid line and the dashed line cross, the drop is spherical.
Due to the viscous dissipation, the amplitude of the oscillation
decreases with time. The theoretical prediction of the time period
calculated from the second mode (n ¼ 2) of oscillation is
(a) Gads = −1.06, θ ≈ 135◦

Fig. 5. Different contact angles obtained through adjusting the parameter Gads. The lower
Tanal ¼ 2601, while the result given by the present LB model is
TLBM ¼ 2701, with relative error 6.5%.

3.6. Evaluation of contact angle

Fig. 5 demonstrates that different contact angles can be
obtained through adjusting the parameter Gads in Eq. (12). In these
simulations, no body force Fbody is applied, and a semi-sphere sta-
tionary droplet with a radius of r ¼ 25 is initially placed on a flat
homogeneous solid surface. The computational domain size is
120� 120� 80 lattice; the upper and lower boundaries are solid
walls; and the periodical boundary conditions are employed in
the X and Y directions. C–S EOS is used and the temperature is
T ¼ 0:5Tc , which corresponds to ql=qg � 720.
3.7. Droplets motion in a microchannel

Understanding the droplet dynamics on the solid phase is of
great importance to many microfluidic devices (Kang et al., 2005;
Hao and Cheng, 2009; Gong and Cheng, 2012; Liu et al., 2014).
For example, water management is considered to be a critical issue
on the performance of proton exchange membrane fuel cells
(PEMFC). In a PEMFC cathode, air is supplied to the gas channel
and transport to the catalyst layer where electrochemical reactions
occur and water is produced. In order to maintain high proton con-
ductivity of the membrane, it is necessary to keep sufficient water.
On the other hand, however, too much water can cause clogging of
the gas channel, hindering transportation of gas to the reaction
sites, and leading to serious degradation of fuel cell performance.
The application of the LB multiphase model to study water droplet
dynamics in a microchannel will provide a basic understanding for
the droplet behavior in a PEMFC gas channel.

In the following, we apply the three-dimensional LB multiphase
model to investigate the effects of droplet surface tension, channel
surfacewettability, and channel surface roughness on themotion of
droplets in a microchannel. In the simulations, the body force Fbody

in Eq. (13) is calculated as Fbody ¼ gðq� qgÞ, which means that the
body force only affects the liquid phase. For simplicity,
we choose g ¼ ðg;0; 0Þ, and g is fixed as g ¼ 5� 10�6. The
(b) Gads = −1.15, θ ≈ 45◦

2D figures are the cross-sectional view on the middle section along the Y direction.



(a) Hydrophobic surface, Gads = −1.098 (b) Hydrophilic surface, Gads = −1.122

(c) Mixed wettability surface, Gads change
linearly from -1.098 to -1.122

Fig. 7. The droplet shape and its position at t ¼ 50;000.

(a) κ = 0.25 (b) κ = 0.5

Fig. 6. The droplets shape with different surface tension. The upper 2D figures are the cross-sectional view on the middle section along the channel.

(a) Droplet centroid (xc) position in horizontal direction (b) Droplet centroid (zc) position in vertical direction

Fig. 8. The motion of droplet centroid position in three different microchannels.
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computational domain is taken as Nx � Ny � Nz ¼ 361� 91� 91
and a liquid droplet having a radius of R ¼ 34 with its center at
ð91;46;17Þ is initially placed in contact with the bottom surface.
C–S EOS is used and the parameter r in Eq. (10) is set to be
r ¼ 0:12 to achieve thermodynamic consistency. The temperature
is T ¼ 0:52Tc , which corresponds to ql � 0:4444; qg � 0:0009 and
ql=qg � 490. Periodic boundary condition is applied in the X direc-
tion, while non-slip bounce back boundary condition is applied on
the four walls (Y ¼ 1; Y ¼ 91; Z ¼ 1, and Z ¼ 91).

3.7.1. Effects of droplet surface tension
A feature of the present pseudo-potential based LB multiphase

model is that surface tension is a variable independent of density
ratio. To demonstrate this feature, droplets with different values



(a) t = 20000 (b) t = 30000

(c) t = 40000 (d) t = 60000

Fig. 10. Droplet motion on the rough microchannel surface (S ¼ 3).

(a) 3D view of microchannel with roughness (b) Schematic drawing of microstructure
of rough channel surface

Fig. 9. Geometries for the microchannel with roughness.

Fig. 11. Droplet motion on bottom surface with different micropillar spacings.
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of surface tension and the same density ratio is set initially. The
surface tension c can be varied by adjusting the parameter j in
Eq. (11), while the contact angle h is kept the same by adjusting
the parameter Gads in Eq. (12). Define the capillary number (Ca)
as Ca ¼ lU=c, which represents the ratio of viscous force to
interfacial force, and the Bond number (Bo) as Bo ¼ DqgL2=c, which
represents the ratio of gravitational force to surface force. Here, U
is the terminal droplet moving velocity, L is the diameter
of the droplet. The surface tension c is determined by Laplace’s
law, and the dynamic viscosity l is calculated as
l ¼ qm ¼ qc2s ðs�1

m � 0:5Þ with s�1
m ¼ 0:8. Fig. 6 compares the droplet

shapes during motion along the microchannel surface. In case (a),
U ¼ 0:009 and c ¼ 0:01005, thus Ca ¼ 0:039 and Bo ¼ 1:02; in case
(b), U ¼ 0:0112 and c ¼ 0:007835, thus Ca ¼ 0:063 and Bo ¼ 1:31.
With a decrease in surface tension (i.e., increasing parameter j),
the droplet deformation is found to be increased. This phe-
nomenon implies that the droplet stretched more with a larger
capillary number and Bond number. In addition, the dynamic con-
tact angles are different as a result of various droplet surface
tension.
3.7.2. Effects of channel surface wettability
Three microchannels with different surface wettabilities are

considered: Case (a), uniform hydrophobic surface; Case (b), uni-
form hydrophilic surface; Case (c), heterogeneous surface with
mixed wettabilities. In Cases (a) and (b), uniform static contact
angles are adopted along the channel surfaces by setting uniform
fluid–solid interaction Gads along the X direction, while in Case
(c), Gads changes linearly from X ¼ 0 to X ¼ 1, thus the static con-
tact angle gradually varies along the X direction. Initially the sur-
face tension of these three droplets are the same, by fixing the
parameter j in Eq. (11) as j ¼ 0:5. Fig. 7 shows the droplet shape
and its position at t ¼ 50;000.

To quantitively describe the droplet distribution along the
microchannel surface and the time required for droplet removal,
we define the centroid of the droplet as

Xc ¼ ðxc; yc; zcÞ ¼
R
Xl
xdxR

Xl
1dx

ð36Þ

where Xl denotes the region that the droplet occupies. The motion
of droplet centroids position in these three channels is plotted in
Fig. 8.

Droplets motion on a hydrophobic microchannel surface takes
much shorter time than on hydrophilic surface. On the other hand,



(a) S = 3 (b) S = 7

Fig. 12. Droplet shape and position on microchannel rough surface with micropillar spacing S ¼ 3 and S ¼ 7 at t ¼ 80;000.
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however, droplet clogging is more easily caused by hydrophobic
microchannel, since the droplets have relative higher centroid
position in vertical direction. While on a hydrophilic microchannel
surface, the droplet adheres the microchannel wall, leaving some
voids in the microchannel for gaseous transportation. A compro-
mise is a heterogeneous microchannel surface with mixed wetta-
bility, i.e., wettability changes gradually from hydrophobic to
hydrophilic, such characteristics could be used to enhance droplets
removal and gases transport in microchannels.

3.7.3. Effects of channel surface roughness
The roughness is simplified as a group of micropillars on the

lower channel wall, as illustrated in Fig. 9. The micropillar are dis-
tributed evenly in the microchannel with width w, height h and
spacing S. In the simulations, we fix w ¼ 4 lattice, h ¼ 5 lattice,
and investigate the effect of S on the droplet motion.

Fig. 10 shows snapshots of droplet motion on the bottom sur-
face with micropillar spacing S ¼ 3 lattice in a microchannel, while
Fig. 11 gives the droplet centroid position (Xc) as a function of lat-
tice time (t) for varying micropillar spacings (S). In the simulations,
a stationary droplet is formed at t ¼ 0 and an equilibrium state is
reached at t ¼ 20;000. At this equilibrium state, the droplet
becomes a truncated sphere in shape as shown in Fig. 10(a). Begin-
ning at this moment (t ¼ 20;000), the external body force Fbody is
suddenly added, driving the droplet motion. In all simulations,
the droplets move with the same velocity and same shape in the
flat regions as shown in Fig. 10(b), until at t ¼ 39;000 they reach
the rough areas. After that, droplets motion on bottom surface with
different micropillar spacing (S) show different behaviors. The dro-
plets velocities increase at first stage (e.g., Fig. 10(c)), and then
decrease at second stage (e.g., Fig. 10(d)). The increase of droplets
velocities in the first stage is due to large adhesion force at the
spacings, driving the droplet to adhere between the spacings;
while the decrease of droplets velocities in the second stage is
due to the large gaps between the micropillars, resulting in dro-
plets falling down into the roughness. Also, at the second stage,
the effect of micropillar spacing to droplet interface thickness ratio
is remarkable. When the micropillar spacing S is larger than the
droplet interface thickness (usually 3–5 lattice in the simulations),
for example, as S ¼ 7 shown in Fig. 12(b), the droplet will be
trapped in the rough region and could no longer be removed out.
For very large micropillar spacing, (e.g., S ¼ 19), which is the limit-
ing case of flat surface, the droplet could also be removed out.
4. Conclusion

In this work, we have presented a three-dimensional pseudo-
potential-based LB model with an improved forcing scheme for
multiphase flows. The numerical validations demonstrate that
the present model allows large density ratio (around 700 in static
and quasi-static cases) and variable surface tension flows to be
more realistically simulated. The application of the model to the
droplet motion in a microchannel shows that the channel surface
with mixed wettability enhances droplets removal and gases
transport in microchannels. It is also observed that inappropriate
design of micropillar spacing leads to droplets trapping, thus hin-
dering droplets removal.
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